Bridges in Mathematics, Grade 2

Unit 3: Addition \& Subtraction Within One Hundred

In this unit your child will:

- Make graphs and answer questions about the graphs
- Solve addition and subtraction story problems

- Add and subtract 2-digit numbers using efficient strategies

- Represent addition and subtraction on a number line

Your child will practice these skills by solving problems like those shown below.

PROBLEM	COMMENTS
Write a question about the graph that can be solved using an equation. "I see there are way more browns than blues. My question is: How many more browns than blues?" "I know you can find the difference by solving $18-4=14$. "	Making graphs and answering questions about them Students organize data in a bar graph and share their observations. Then they write questions and solve problems using information presented in the graph.
This unit focuses on two different strategies for multi-digit addition and subtraction to 100-jumping and splitting.	
$15+24=$ "I jumped to 15 , then jumped by 10 s to 25 and 35 , then 4 more to 39. ."	Adding on a number line: Jumping In Unit 2, using measuring tapes marked in sections of 5 s and 10 s evolved into using the number line as a model to solve double-digit computation. That work continues in this unit as students practice adding 2-digit numbers in multiples of 10 and then by 1 s .
Andrew is 49 inches tall. His big brother, Matt, is 76 inches tall. How many inches will Andrew have to grow to be as tall as his big brother? "I hopped 1 to get to 50 . Then I went 10 more and 10 more to get up to 70 . Then I took a hop of 6 to get to $76.1+10+10+6=27$. He needs to grow 27 inches." "I jumped back by 10 s, as many 10 s as I could. When I got to 56 , I jumped 6 to 50 and then 1 more to $49.10+10+6+1$ is 27. ."	Subtracting on a number line: Jumping When using the number line for subtraction, students find the difference between two points. Like making change, the difference is found by adding up from the smaller number to the larger number. The amount added is the difference. Students may jump from the larger number to the smaller number as well.

PROBLEM
There were 32 presents in the closet and 15 on
the table. How many presents were there in all?
"I added the tens $(30+10=40)$ and
then the ones $(2+5=7)$ "Then I added them
together to find the total sum
(40 $+7=47$). 47 presents!"
Dad ordered 51 presents for the party. There are 27
of these presents already on the table. The rest of
the presents are still in the delivery truck. How many
presents are in the truck?

FREQUENTLY ASKED QUESTIONS ABOUT UNIT 3

Q: Why are students solving addition and subtraction problems in so many ways?
Why don't they learn to do it the way I learned to do it in grade school?
A: The way many of us learned to add and subtract in grade school is referred to as the standard algorithm. An algorithm is simply a series of steps that you can follow to solve a particular kind of problem. The advantage of learning algorithms is that they work every time, always producing a correct answer if followed correctly.

Standard Algorithm for Addition	Standard Algorithm for Subtraction
${ }^{1} 13$	${ }^{4} \sqrt{1}^{16}$
+18	
31	$\frac{-37}{19}$

The disadvantage of learning algorithms too soon is that students often don't understand what they are doing, and the value of the digits is ignored. As a result, they often make mistakes or forget how to carry out the steps correctly. The lessons in this unit draw students' attention to using the strategies discussed above while allowing students to solve problems in ways that make sense to them. Research suggests that students who choose their own strategies before learning an algorithm show better understanding of place value concepts and transfer their knowledge and skills more effectively to work with larger numbers.

