I can choose strategies for solving a problem and checking my answers.

To get started I...

How many flowers did they pick?

Describe the problem in my own words.

While I'm working I...

Follow my plan to solve the problem.

When I have an answer I...

Does 8 + 8 + 8 equal 24?

Ask if it makes sense.

Decide what information I need.

Try another strategy if I get stuck.

Check my work using another strategy.

Check with a partner. If our answers differ, I figure out why.

Select a strategy.

Keep working until I find an answer.

Make sense of problems and persevere in solving them. MP. 1
Reason abstractly and quantitatively. MP. 2

I can represent math problems in a variety of ways and think about what the problems mean.

I show my thinking with labeled sketches, charts, or diagrams.

John's cat weighs 5 kilograms. How many grams is that?

1 kg = 1000 grams

\[\frac{1000}{5} = 5000 \text{ grams} \]

I show story problems with expressions and equations.

A box of cereal has 10 servings, each with 240 grams of cereal. How many total grams of cereal in the box?

\[240 \text{ grams} \times 10 = 2400 \text{ grams} \]

I come up with a story to describe an expression or equation.
I share ideas, explain my thinking, and analyze others’ ideas.

I drew a 5-by-3 array and then added 5 plus 5 plus 5, which is 15.

What did you use to find your answer?

I ask others to explain how they got an answer or why they chose their strategy.

I explain how I got the answer.

I show connections between ideas, like how the area of a rectangle is related to multiplication.

I compare my strategy to someone else’s.

$5 \times 3 = 15$

$5 + 5 + 5 = 15$

$5 \times 3 = 15$ sq. units
I can see math in the world around me.
I can use math to answer questions and gain insight about situations and problems.

I can use the array I sketched to figure out the exact area. But I also can see right away that it’s going to be a bit more than 200 square feet.

I need 6 cups to make the juice. How can I use this \(\frac{3}{4} \)-cup to measure out 6 cups of water?

Mix 1 package with 6 cups of water to make juice.

I use diagrams and numbers to represent situations mathematically. I think carefully about what those diagrams and numbers can tell me about the situation.

I represent situations with mathematics and use my representations to solve problems efficiently.
Use appropriate tools strategically.

MP. 5

I decide when and how to use math tools, pictures, and models to help solve problems.

- I know when I can estimate and when I need to find the exact answer.
- I use tools like rulers and meter sticks to compare units of measure.
- I represent and explain data with graphs.
- I use one model to solve a problem and a different model to check my answer.
- I determine whether the tool I selected makes sense.
Attend to precision.

MP. 6

I can be mathematically precise and describe my ideas clearly.

I know area is equal to length times width.

I use math vocabulary to explain problems and answers.

I use math symbols to compare and describe.

I make labeled sketches to show my thinking.

I include units when appropriate.

I use accurate and efficient strategies.
Look for and make use of structure.

MP. 7

I use the structure of a number, shape, or model to solve problems and show my thinking.

I use models or patterns to find equivalence.

I use geometric features like lines of symmetry to help define shapes.

I use coordinate numbers to locate a point on a grid or graph.
Look for and express regularity in repeated reasoning.

I can make generalizations about numbers and facts, and come up with strategies to solve similar problems.

I break large numbers, fractions, and decimals into parts to make calculations easier.

I use strategies to make problems simpler instead of doing the same work over and over.

I look for shortcuts that work.

I generalize and apply big ideas to decide if my results make sense.