Bridges Second Edition

to Georgia K-12 Mathematical Standards
(3) THIRD GRADE
(1) Numerical Reasoning - base ten numerals and place value up to 10,000, and rounding up to 1,000

Standard Descriptor Citations

3.NR. 1 Use place value reasoning to represent, read, write, and compare numerical values up to 10,000 and round whole numbers up to 1,000 .

3.NR.1.1	Read and write multi-digit whole numbers up to 10,000 using base-ten numerals and expanded form.	Bridges in Mathematics Student Books: Unit 3: M3-S2, p. 91 Teachers Guide: Unit 3: M3-S2, pp. 8-12 Number Corner Student Books: December: pp. 22-23 Teachers Guide: September: pp. 36-41; December: pp. 28-32
3.NR.1.2	Use place value reasoning to compare multidigit numbers up to 10,000 , using >, $=$, and < symbols to record the results of comparisons.	Note: This standard is addressed in Bridges in Mathematics, Grade 4.
3.NR.1.3	Use place value understanding to round whole numbers up to 1000 to the nearest 10 or 100.	Bridges in Mathematics Student Books: Unit 1: M4-S3, p. 27 Unit 3: M1-S2, p. 76; S3, pp. 78-79; S4, pp. 80-81; S5, p. 82; M3-S1, pp. 89-90; S4, p. 95; M4-S1, p. 96 Unit 6: M3-S1, p. 203 Teachers Guide: Unit 1: M4-S3, pp. 14-15 Unit 3: M1-S2, pp. 8-11; S3, pp. 14-17; S4, pp. 20-23; M2-S1, p. 4; M3-S1, pp. 4-5; S3, pp. 14-16 Number Corner Student Books: November: p. 15; December: pp. 22-23 Teachers Guide: November: pp. 27-32; December: pp. 27-32

(2) Patterning \& Algebraic Reasoning - fluency, addition and subtraction within 10,000, multiplication and division within 100, equality, properties of operations

Standard Descriptor Citations

3.PAR. 2 Use part-whole strategies to represent and solve real-life problems involving addition and subtraction with whole numbers within 10,000 .

```
Fluently add and Bridges in Mathematics
subtract within Student Books:
1,000 to solve
problems.
Unit 1: M1-S1, p. 1; S2, p. 2; S4, pp. 4-5; S5, pp. 6-7; M2-S1, p. 8; S2, pp. 9-10; S4, pp. 13-15; M4-S1, pp. 24-25; S2, p. 26; S3, p. 27
Unit 2: M1-S5, p. }4
Unit 3: M1-S2, p. 77; M4-S2, pp. 97-98; S3, p. 99; S4, pp. 100-101
Unit 4: M2-S3, p. }12
Unit 6: M1-S4, p. }19
Teachers Guide:
Unit 1: M1-S3, pp. 17-20; S4, pp. 21-28; S5, pp. 29-35; M2-S1, pp. 3-10; S2, pp. 11-17; S3, pp. 19-24; S4, pp. 25-28; M4-S1, pp. 3-5,
S3, pp. 14-15
Unit 2: M1-S1, p. 34; S2, p. }3
Unit 3: M4-S1, pp. 4-8; S3, pp. 16-20
Unit 4: M2-S3, pp. 12-13
```


Number Corner

```
Student Books:
October: p. 10; December: p. 23
Teachers Guide:
September: pp. 45-49; October: pp. 38-46; December: pp. 28-32
```

Apply part-
whole strategies,
properties of
operations and
place value
understanding, to
solve problems
involving addition
and subtraction
within 10,000.
Represent these problems using equations with a letter standing for the unknown quantity. Justify solutions.

Bridges in Mathematics

Student Books:
Unit 1: M3-S1, p. 16; S2-3, pp. 17-20; S4, pp. 21-22; S5, p. 23; M4-S3, p. 28; S4, p. 29; S5, pp. 30-32; S6, p. 33
Unit 3: M1-S2, p. 77; S3, p. 79; S5, p. 82; S6, p. 83; M2-S1, pp. 84-85; S3, p. 86; S4, p. 87; S5, p. 88; M3-S1, p. 89; S3, p. 93; S4, pp. 94-95; M4-S1, p. 96; S2, pp. 97-98; S3, p. 99; S4, pp. 100-101; S5, p. 102
Teachers Guide:
Unit 1: M3-S2, pp. 13-14; S3, pp. 19-24; S4, pp. 28-32; S5, pp. 36-39; M4-S2, pp. 8-9; S3, pp. 12-14; S4, pp. 18-20; S5, pp. 24-27 Unit 3: M1-S3, pp. 14-17; S5, pp. 26-29; S6, pp. 32-36; M2-S1, pp. 5-8; S2, pp. 10-15; S3, pp. 18-20; S4, pp. 24-27; S5, pp. 30-33; M3-S1, pp. 4-5; S4, pp. 18-21; M4-S1, pp. 4-8; S2, pp. 10-14; S3, pp. 16-20; S4, pp. 22-26

Number Corner

Teachers Guide:
January: pp. 38-39
3.PAR. 3 Use part-whole strategies to solve real-life, mathematical problems involving multiplication and division with whole numbers within 100.

3.PAR.3.1	Describe, extend, and create numeric patterns related to multiplication. Make predictions related to the patterns.	Bridges in Mathematics Student Books: Unit 2: M3-S1, p. 58; S2, p. 59; S4, p. 62 Teachers Guide: Unit 2: M1-S4, pp 25-26; M2-S1, pp. 4-5; S2, pp. 8-15; M3-S1, pp. 5-9; S2, pp. 12-16 Number Corner Student Books: January: pp. 26-27; February: pp. 34-36; March: pp. 45-46 Teachers Guide: January: pp. 23-26; February: pp. 23-26; March: pp. 23-26
3.PAR.3.2	Represent single digit multiplication and division facts using a variety of strategies. Explain the relationship between multiplication and division.	Bridges in Mathematics Student Books: Unit 2: M1-S3, pp. 36-38; S4, p. 39; S5, p. 40; M2-S1, p. 45; S3, pp. 47-50; S4, p. 51-53; M3-S1, p. 58; S5, pp. 64-65; M4-S1, p. 67 Unit 3: M1-S1, p. 75 Unit 5: M1-S2, pp. 144-145; S3, p. 147; M2-S1, p. 153; S2, pp. 154-155; S3, pp. 156-159; S4, p. 162; M3-S3, p. 171; S4, pp. 172-174 Unit 7: M1-S3, p. 226; M2-S4, p. 235 Teachers Guide: Unit 2: M1-S4, pp 25-26; S5, pp 28-29; M2-S1, p. 5; S2, pp. 8-15; S4, pp. 26-31; M3-S1, pp. 5-9; S2, pp. 12-13; S3, pp. 18-20; S4, pp. 22-25; S5, pp. 31-32 Unit 5: M1-S2, pp. 8-12; M2-S2, pp. 10-12; M3-S4, pp. 20-24 Number Corner Student Books: November: pp. 11, 13-14; December: pp. 19-20; January: pp. 26-27; February: pp. 34-36; March: pp. 45-46; April: pp. 60-67 Teachers Guide: November: pp. 5-12; December: pp. 23-26, 34-36; January: pp. 23-26; February: pp. 23-24; March: pp. 23-24; April: 21-27, 37
3.PAR.3.3	Apply properties of operations (i.e., commutative property, associative property, distributive property) to multiply and divide within 100.	Bridges in Mathematics Student Books: Unit 2: M1-S3, pp. 36-37 Unit 7: M2-S5, p. 236 Teachers Guide: Unit 2: M1-S2, pp. 12-13; S3, pp. 18-20; M2-S3, pp. 21-24; S5, pp. 34-39; M3-S4, p. 25 Unit 7: M2-S5, pp. 30-33; M3-S1, pp. 4-6 Number Corner Student Books: November: pp. 11, 13-14; March: pp. 45-46; April: pp. 60-67 Teachers Guide: November: pp. 5-12, 21-24; December: pp. 34-36; March: pp. 23-24; April: 21-27, 37

3.PAR.3 Use part-whole strategies to solve real-life, mathematical problems involving multiplication and division with whole numbers within 100.

| 3.PAR.3.4 | Use the meaning
 of the equal sign
 to determine
 whether | Bridges in Mathematics
 expressions
 Student Books:
 involving addition, 160
 subtraction, and
 multiplication are
 equivalent. |
| :--- | :--- | :--- | | Unit 5: M2-S4, p. 160 |
| :--- |
| Unit 7: M2-S3, p. 234; S5, p. 236 |
| Teachers Guide: |
| Unit 5: M2-S4, pp. 18-20 |

Use place value reasoning and
 Bridges in Mathematics

 properties of operations to multiply one-digit whole numbers by multiples of 10 , in the range 10-90.Student Books:
Unit 7: M1-S5, pp. 229-231; M2-S2, pp. 233; S4, p. 235; S5, p. 236
Teachers Guide:
Unit 2: M2-S2, p. 13
Unit 7: M1-S5, pp. 26-28

Number Corner

Student Books:
February: pp. 34-36
Teachers Guide:
February: pp. 17-20, 34-36
Solve practical,
relevant problems
involving
multiplication
and division
within 100 using
part-whole
strategies, visual
representations,
and/or concrete
models.

Bridges in Mathematics

Student Books:
Unit 2: M2-S2, p. 49; S4, p. 52; S5, pp. 54, 56; M3-S3, p. 61
Unit 5: M1-S4, p. 148; S6, p. 151; M3-S2, pp. 166-167, 169-170; M4-S1, p. 176
Unit 6: M1-S1, p. 187
Teachers Guide:
Unit 2: M1-S1, pp. 3-9; M2-S3, pp. 18-20; S5, pp. 34-39
Unit 5: M1-S3, pp. 15-19; S4, pp. 21-26; M2-S1, pp. 4-6; S2, pp. 8-10; M3-S3, pp. 14-18
Unit 7: M2-S1, pp. 4-8; S2, pp. 10-15; S3, pp. 18-22; S4, pp. 24-28
3.PAR. 3 Use part-whole strategies to solve real-life, mathematical problems involving multiplication and division with whole numbers within 100.

```
Use multiplication Bridges in Mathematics
and division to
solve problems
involving whole
numbers to 100
Represent these problems using equations with a letter standing for the unknown quantity. Justify solutions.
```


Bridges in Mathematics

```
Student Books:
Unit 2: M1-S5, pp. 41-43; S6, p. 44; M2-S2, p. 46; S4, p. 53; M3-S1, p. 58; S2, p. 60; S3, p. 61; M4-S3, pp. 71-72; S3, p. 73; S4, p. 74
Unit 4: M1-S1, p. 103
Unit 5: M1-S2, p. 146; S5, p. 149; S6, p. 150; M2-S4, p. 161; M3-S1, pp. 163-165; S2, pp. 166-168
Unit 6: M3-S1, p. 203
Unit 7: M1-S2, pp. 222-224; M2-S1, p. 232; S4, p. 235
Teachers Guide:
Unit 2: M1-S5, pp. 29-34; S6, pp. 36-37; M3-S3, pp. 18-20; M4-S3, pp. 14-15
Unit 5: M1-S5, pp. 28-31; S6, pp. 34-36; M2-S1, pp. 4-6; S3, pp. 14-16; M3-S1, pp. 4-7; S2, pp. 10-12
Unit 7: M1-S2, pp. 8-10
```


Number Corner

```
Teachers Guide:
November: pp. 34-38
```

3 Numerical Reasoning - unit fractions, equivalent fractions, fractions greater than 1

Standard Descriptor Citations

3.NR. 4 Represent fractions with denominators of $2,3,4,6$ and 8 in multiple ways within a framework using visual models.
$\left.\begin{array}{l|l|l|} & \begin{array}{l}\text { Describe a unit } \\ \text { fraction and } \\ \text { explain how } \\ \text { multiple copies } \\ \text { of a unit fraction } \\ \text { form a non- } \\ \text { unit fraction. } \\ \text { Use parts of a } \\ \text { whole, parts of } \\ \text { a set, points on } \\ \text { a number line, } \\ \text { distances on a } \\ \text { number line and } \\ \text { area models. }\end{array} & \begin{array}{l}\text { Bridges in Mathematics } \\ \text { Student Books: } \\ \text { Unit 4: M3-S2, p. 129; S3, p. 130; S5, pp. 134-136 } \\ \text { Unit 7: M3-S2, pp. 238-241 } \\ \text { Teachers Guide: }\end{array} \\ \hline & \begin{array}{l}\text { Unit 4: M3-S1, pp. 4-7; S4, pp. 24-28; S5, pp. 30-33 } \\ \text { Unit 7: M3-S2, pp. 12-18 } \\ \text { Number Corner }\end{array} \\ \text { Student Books: } \\ \text { Teachers Guide: } \\ \text { November: pp. 15-18; December: pp. 8-14; January: pp. 8-13; } \\ \text { February: pp. 17-21; April: pp. 7-12, 14-18, 30-35 }\end{array}\right]$
3.NR. 4 Represent fractions with denominators of $2,3,4,6$ and 8 in multiple ways within a framework using visual models.
Represent
fractions,
including
fractions greater
than one, in
multiple ways.
3.NR.4.3

Bridges in Mathematics

Student Books:
Unit 4: M3-S2, p. 129; S3, p. 130-131; S4, p. 133; S5, pp. 134-136; M4-S4, p. 142
Unit 5: M1-S1, p. 143; M4-S6, p. 186
Unit 6: M1-S1, p. 187; M4-S1, pp. 213-215; S2, p. 217; S3, pp. 218-219
Unit 7: M3-S2, pp. 238-241; S3, p. 242; S5, pp. 244-247; M4-S1, pp. 248-249; S2, pp. 251-252; S3, pp. 254-255; S4, pp. 256-257 Unit 8: M2-S1, pp. 268-269
Teachers Guide:
Unit 4: M3-S1, pp. 4-7; S2, pp. 10-13; S3, pp. 16-21; S4, pp. 24-28; S5, pp. 30-33
Unit 6: M4-S1, pp. 4-7; S2, pp. 10-13; S3, pp. 16-18
Unit 7: M3-S1, pp. 6-9; S2, pp. 12-18; S3, pp. 20-22; S4, pp. 24-27; S5, pp. 30-33; M4-S1, pp. 4-10; S2, pp. 12-14; S3, pp. 16-19; S4,
pp. 22-26

Number Corner

Student Books:
November: p. 12; December: p. 18; January: p. 24; February: pp. 32, 38-39; March: pp. 48-50; April: pp. 54-55; May: pp. 69-70, 72 Teachers Guide:
November: pp. 15-18; December: pp. 8-14; January: pp. 28-32;
February: pp. 15-21; March: pp. 27-30; April: pp. 14-18; May: pp. 7-13

Recognize and

 generate simple equivalentfractions.

Bridges in Mathematics

Student Books:
Unit 6: M4-S2, pp. 216-217; S3, pp. 218-219
Teachers Guide:
Unit 6: M4-S2, pp. 11-12; S3, pp. 16-18
Unit 7: M3-S3, pp. 20-22; S4, pp. 24-27; M4-S2, pp. 12-14

Number Corner

Student Books:
October: p. 5; December: p. 18; January: p. 24
Teachers Guide:
October: pp. 19-26; December: pp. 11-14; January: pp. 13-14
4) Measurement \& Data Reasoning - elapsed time, liquid volume, mass, lengths in half and fourth of an inch, data

Standard Descriptor Citations

3.MDR. 5 Solve real-life, mathematical problems involving length, liquid volume, mass, and time.
Ask questions
and answer
them based
on gathered
information,
observations,
and appropriate
graphical displays
to solve problems
relevant to
everyday life.

Bridges in Mathematics

Student Books:
Unit 2: M3-S5, pp. 63, 65; M4-S1, pp. 66-67; S2, pp. 68-70; S3, p. 73
Unit 4: M4-S2, pp. 138-139; S3, pp. 140-141
Unit 7: M4-S3, pp. 253-254
Unit 8: M1-S5, pp. 265-266; M2-S3, p. 271; S4, p. 273-274; M3-S3, pp. 280-281; S5, p. 283; S6, pp. 284-285; M4-S4, p. 289
Teachers Guide:
Unit 1: M1-S2, pp. 10-15
Unit 2: M3-S5, pp. 28-31; M4-S1, pp. 4-6; S2, pp. 8-10
Unit 4: M4-S2, pp. 8-12; S3, pp. 14-15
Unit 7: M4-S3, pp. 16-19; S4, pp. 22-26
Unit 8: M1-S5, pp. 29-31; M2-S3, pp. 18-19; S4, pp. 23-24; M3-S3, pp. 17-19; S5, pp. 27-29; S6, pp. 32-34; M4-S3, pp. 10-11; S4, pp. 14-16

Number Corner

Student Books:
February: p. 41; March: p. 42; May: p. 74
Teachers Guide:
September: pp. 18-24; February: pp. 34-37; March: pp. 7-11; May: pp. 17-23

```
Tell and write time
to the nearest
minute and
estimate time to
the nearest fifteen
minutes (quarter
hour) from the
analysis of an
analog clock.
```


Bridges in Mathematics

Student Books:
Unit 4: M1-S2, pp. 104-106; S3, p. 109
Unit 6: M2-S1, p. 195
Teachers Guide:
Unit 4: M1-S2, pp. 8-11

Number Corner

Student Books:
January: p. 25; April: pp. 55
Teachers Guide:
January: pp. 16-22; March: pp. 5-9; April: pp. 13-16
3.MDR. 5 Solve real-life, mathematical problems involving length, liquid volume, mass, and time.

```
Solve meaningful Bridges in Mathematics
problems
involving elapsed
time, including
intervals of time
to the hour, half
hour, and quarter
hour where the
times presented
are only on the
hour, half hour,
or quarter hour
within a.m. or
p.m. only.
```

```
Student Books:
```

Student Books:
Unit 4: M1-S3, pp. 107-109; S4, p. 110
Unit 4: M1-S3, pp. 107-109; S4, p. 110
Unit 6: M2-S1, p. 195
Unit 6: M2-S1, p. 195
Unit 8: M3-S1, p. 278; S2, p. 279; M4-S4, p. 290
Unit 8: M3-S1, p. 278; S2, p. 279; M4-S4, p. 290
Teachers Guide:
Unit 4: M1-S3, pp. 16-18; M2-S3, p. 121; S4, pp. 125-126; S5, p. }12
Unit 8: M3-S2, p. }1

```

\section*{Number Corner}
```

Student Books:
January: p. 25; April: pp. 55
Teachers Guide:
January: pp. 16-22; March: pp. 5-9; April: pp. 13-16

```

\section*{Use rulers to measure lengths} in halves and fourths (quarters) of an inch and a whole inch.

\section*{Bridges in Mathematics}

Student Books:
Unit 4: M4-S2, p. 138
Teachers Guide:
Unit 4: M4-S1, pp. 5-6; S2, p. 10
Unit 8: M2-S3, p. 17
\begin{tabular}{|c|c|}
\hline \multirow[t]{16}{*}{Estimate and measure liquid volumes, lengths and masses of objects using customary units. Solve problems involving mass, length, and volume given in the same unit, and reason about the relative sizes of measurement units within the customary system.} & \\
\hline & \\
\hline & Unit 1. M3-S2-3, pp \\
\hline & Unit 2: M1-S5, pp. 41-43; M2-S2, p. 46 \\
\hline & Unit 4: M1-S5, p. 111; S6, pp. 112-114; \\
\hline & \[
\text { p. } 128
\] \\
\hline & Unit 6: M2-S4, p. 199 \\
\hline & Unit 8: M1-S1, p. 259; S2, pp. 260 \\
\hline & Teachers Guid \\
\hline & Unit 1: M3-S2, pp. 11-14; S3, pp. 19-24 \\
\hline & Unit 2: M1-S5, pp. 29-34; S6, pp. 36-37 \\
\hline & Unit 4: M1-S4, pp. 20-24; S5, pp. 26-28 \\
\hline & Unit 8: M1-S2, pp. 10-13; S4, pp. 22-23 \\
\hline & Number Corne \\
\hline & Student Books: October: p. 5 Teachers Guide: \\
\hline & October: pp. 19-26; December: pp. 21-22 \\
\hline
\end{tabular}

Estimate and measure liquid volumes, length nd masses of objects using ustomary units Solve problems involving mass,

\section*{Bridges in Mathematics}

Student Books:
-S6, p. 33

Unit 4: M1-S5, p. 111; S6, pp. 112-114; M2-S1, pp. 115-117; S2, pp. 118-119; S3, pp. 121-123; S4, pp. 124-126; S5, p. 127; M3-S1, p. 128; M4-S1, p.137; S4, p. 142

M1-S6, p. 152
Unit 6: M2-S4, p. 199

Teachers Guide:
Unit 1: M3-S2, pp. 11-14; S3, pp. 19-24; S4, pp. 30-31
Unit 2: M1-S5, pp. 29-34; S6, pp. 36-37
S6, pp. 32-35; M2-S1, pp. 4-6; S2, pp. 8-10; S3, pp. 13-15; S4, pp. 18-21; S5, pp. 24-26

Number Corner
Student Books: October: p. 5
October: pp. 19-26; December: pp. 21-22

5 Geometric \& Spatial Reasoning - polygons, parallel line segments, perpendicular line segments, right angles, lines of symmetry, area, perimeter

\section*{Standard Descriptor Citations}
3.GSR. 6 Identify the attributes of polygons, including parallel segments, perpendicular segments, right angles, and symmetry.
\begin{tabular}{|c|c|c|}
\hline 3.GSR.6.1 & \begin{tabular}{l}
Identify \\
perpendicular line segments, parallel line segments, and right angles, identify these in polygons, and solve problems involving parallel line segments, perpendicular line segments, and right angles.
\end{tabular} & \begin{tabular}{l}
Bridges in Mathematics \\
Student Books: \\
Unit 6: M1-S2, p. 188; S3, p. 191; M2-S2, p. 197; S3, p. 198; S5, p. 200 \\
Teachers Guide: \\
Unit 6: M1-S2, p. 9; S3, p. 13; S4, pp. 17-18; M2-S1, pp. 4, 6; S3, p. 14; S5, pp. 26-28 \\
Number Corner \\
Student Books: \\
October: p. 4 \\
Teachers Guide: \\
October: pp. 11-12
\end{tabular} \\
\hline 3.GSR.6.2 & \begin{tabular}{l}
Classify, compare, and contrast polygons, with a focus on quadrilaterals, based on properties. \\
Analyze specific \\
3-dimensional figures to identify and describe quadrilaterals as faces of these figures.
\end{tabular} & \begin{tabular}{l}
Bridges in Mathematics \\
Student Books: \\
Unit 6: M1-S2, pp. 188-189; S3, p. 190; S4, p. 192; S5, p. 194; M2-S1, p. 195; S2, p. 197; S3, p. 198; S4, p. 199; S5, p. 200; M3-S1, pp. 204 \\
Unit 8: M2-S5, pp. 275-276 \\
Teachers Guide: \\
Unit 6: M1-S2, pp. 8-10; S3, pp. 11-13; S4, pp. 16-18; M2-S1, pp. 4-8; S3, pp. 14-16; S4, pp. 20-24; S5, pp. 26-28; M3-S2, p. 13 \\
Unit 8: M2-S5, pp. 26-27 \\
Number Corner \\
Teachers Guide: \\
October: pp. 7-10, 14-15
\end{tabular} \\
\hline 3.GSR.6.3 & Identify lines of symmetry in polygons. & \begin{tabular}{l}
Bridges in Mathematics \\
Student Books: \\
Unit 6: M1-S2, p. 188; S3, p. 190 \\
Teachers Guide: \\
Unit 6: M1-S2, pp. 8-10 \\
Number Corner \\
Teachers Guide: \\
October: pp. 12-13
\end{tabular} \\
\hline
\end{tabular}
3.GSR. 7 Identify area as a measurable attribute of rectangles and determine the area of a rectangle presented in real-life, mathematical problems.
\begin{tabular}{|c|c|}
\hline Investigate area & Bridges in Mathematics \\
\hline by covering & Student Books: \\
\hline the space of & Unit 5: M4-S2, pp. 177-180; S3, pp. 181-182, S4, p. 183 \\
\hline rectangles & Teachers Guide: \\
\hline realistic situations & Unit 5: M4-S1, pp. 4-7; S2, pp. 10-11; S3, pp. 14-16; S4, pp. 18-20 \\
\hline using multiple & Number Corner \\
\hline copies of the & Teachers Guide: \\
\hline same unit, with no & February: pp. 11-13; March: pp. 15-19 \\
\hline gaps or overlaps, and determine & \\
\hline the total area & \\
\hline (total number of & \\
\hline units that covered & \\
\hline the space). & \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\begin{tabular}{l} 
Determine \\
the area of \\
rectangles (or \\
shapes composed \\
of rectangles)
\end{tabular} & Bridges in Mathematics \\
presented in \\
relevant problems & Unit 5: M4-S2, pp. 177-180; S3, pp. 181-182; S4, p. 183 \\
by tiling and & Unit 6: M3-S2, pp. 205; S4, pp. 208-209 \\
counting. & Teachers Guide: \\
& Unit 5: M4-S1, pp. 4-7; S2, pp. 10-11; S3, pp. 14-16; S4, pp. 18-20; S5, pp. 24-27 \\
& Unit 6: M3-S3, pp. 16-19; S5, pp. 26-30 \\
& Unit 8: M1-S2, p. 12; S4, pp. 23-24 \\
& Number Corner \\
& Teachers Guide: \\
& February: pp. 11-13; March: pp. 15-19, 34-36
\end{tabular}

Discover and explain how area can be found by multiplying the dimensions of a rectangle.

\section*{Bridges in Mathematics}

Student Books:
Unit 5: M4-S4, p. 184; S5, p. 185
Unit 6: M3-S2, pp. 205; S3, pp. 206-207; S4, pp. 208-209; S5, p. 211
Unit 7: M1-S1, p. 221
Teachers Guide:
Unit 5: M4-S4, pp. 18-20
Unit 6: M3-S3, pp. 16-19
3.GSR. 8 Determine the perimeter of a polygon presented in real-life, mathematical problems.
\begin{tabular}{l|l|l|} 
& \begin{tabular}{l} 
Determine the \\
perimeter of \\
a polygon and \\
explain that \\
the perimeter \\
represents the \\
distance around \\
a polygon. \\
Solve problems \\
involving \\
perimeters of \\
polygons.
\end{tabular} & \begin{tabular}{l} 
Bridges in Mathematics \\
Student Books:
\end{tabular} \\
\hline & \begin{tabular}{l} 
Unit 6: M2-S6, pp. 201-202; M3-S2, p. 205; S3, p. 207; S4, pp. 208-209 \\
Unit 7: M1-S3, p. 226; M4-S1, p. 250 \\
Unit 8: M2-S1, p. 267; S5, p. 277; M3-S4, p. 282 \\
Teachers Guide: \\
Unit 6; M2-S6, pp. 32-34; M3-S1, pp. 4-7; S5, pp. 28-30 \\
Unit 8: M2-S1, p.5
\end{tabular} \\
\hline & \begin{tabular}{l} 
Number Corner \\
Student Books: \\
February: p. 31; March: p. 51
\end{tabular} \\
& \begin{tabular}{ll} 
Teachers Guide: \\
February: pp. 9-10, 12; March: pp. 16-20, 32-35
\end{tabular} \\
\begin{tabular}{lll} 
Investigate \\
and describe \\
how rectangles \\
with the same \\
perimeter can \\
have different \\
areas or how \\
rectangles with \\
the same area \\
can have different \\
perimeters.
\end{tabular} & \begin{tabular}{l} 
Bridges in Mathematics \\
Student Books: \\
Unit 6: M3-S2, p. 205; S4, p. 208
\end{tabular} & \begin{tabular}{l} 
Teachers Guide: \\
Unit 6: M3-S2, pp. 10-12; S4, pp. 22-24
\end{tabular} \\
\hline
\end{tabular}```

