

Number \& Number Sense

Standard Descriptor Citations

2.NS. 1 The student will utilize flexible counting strategies to determine and describe quantities up to 200. The student will:
Represent
forward counting
patterns when
counting by
groups of 2 up
to at least 50,
starting at various
multiples of 2 and
using a variety
of tools (e.g.,
objects, number
lines, hundreds
charts).

This standard is beyond the scope of this program.

Represent
forward counting
patterns created
when counting
by groups of
$5 \mathrm{~s}, 10 \mathrm{~s}$, and 25 s
starting at various
multiples up to
at least 200 using
a variety of tools
(e.g., objects,
number lines,
hundreds charts).

Bridges in Mathematics
Teachers Guide:
Unit 2: $\mathrm{M} 3-\mathrm{S} 2$, pp. 10-11, $\mathrm{S3}$, pp. 14-17
Unit 3: $\mathrm{M} 1-\mathrm{S}$, pp. 7-12, $\mathrm{S3}$, pp. 14-18
Unit 5: M2-S1, pp. 5-9

Unit:M2-S1,pp.5-5

Number Corner

Teachers Guide:
September: pp. 48-50
November: pp. 40-42

Describe and use patterns in skip counting by multiples of 2 (to at least 50), and multiples of 5,10 and 25 (to at least 200) to justify the next number in the counting
 sequence.
 Bridges in Mathematics
 Teachers Guide:
 Unit 5: M4-S1, pp. 4-7, S2, pp. 10-13
 Number Corner
 Teachers Guide:
 October: p. 44, 46

2.NS. 1 The student will utilize flexible counting strategies to determine and describe quantities up to 200 . The student will:

2.NS.1.d	Represent forward counting patterns when counting by groups of 100 up to at least 1,000 starting at 0 using a variety of tools (e.g., objects, number lines, calculators, one thousand charts).	Bridges in Mathematics Teachers Guide: Unit 5: M1-S5, pp. 26-28, M3-S4, pp. 19-20, S5, pp. 22-24 Number Corner Teachers Guide: October: pp. 44, 46 November: pp. 40-42 January: pp. 36-42
2.NS.1.e	Represent backward counting patterns when counting by groups of 10 from 200 or less using a variety of tools including objects, number lines, calculators, and hundreds charts.	Number Corner Teachers Guide: September: pp. 51-52 December: pp. 43-44
2.NS.1.f	Describe and use patterns in skip counting backwards by 10s (from at least 200) to justify the next number in the counting sequence.	This standard is beyond the scope of this program.

2.NS. 1 The student will utilize flexible counting strategies to determine and describe quantities up to 200 . The student will:

2.NS. 2 The student will demonstrate an understanding of the ten-to-one relationships of the base 10 number system to represent, compare, and order whole numbers up to 999. The student will:

2.NS.2.a	Write the three-digit whole number represented by a given model (e.g., concrete objects, pictures of base 10 blocks).	Bridges in Mathematics Teachers Guides: Unit 2: M1-S1, pp. 5-7 Unit 8: M1-S1, pp. 4-5

```
Read, write, and
represent three- digit numbers in standard form, expanded form, and word form, using concrete or pictorial representations.
```


Bridges in Mathematics

```
Teachers Guides:
Unit 5: M1-S2, pp. 10-12
Unit 8: M1-S2, pp. 11-12
```

> Apply patterns within the base 10 system to determine and communicate, orally and in written form, the place (ones, tens, hundreds) and value of each digit in a three-digit whole number (e.g., in 352 , the 5 represents 5 tens and its value is 50).

Bridges in Mathematics

Teachers Guides:
Unit 2: M1-S5, pp. 23-26, S6, pp. 28-30
Bridges in Mathematics
Teachers Guides:
Unit 2: M1-S1, pp. 5-7
2.NS. 2 The student will demonstrate an understanding of the ten-to-one relationships of the base 10 number system to represent, compare, and order whole numbers up to 999. The student will:
2.NS.2.d
2.NS.2.e

Bridges in Mathematics
Teachers Guide:
Unit 2: M1-S5, pp. 23-26, M1-S5, pp. 28-30
Unit 5: M3-S1, pp. 4-8
Number Corner
Teachers Guide:
November: pp. 41
December: pp. 44-46

Compose and

 decompose whole numbers up to 200 by making connections between a variety of models (e.g., base 10 blocks, place value cards, presented orally, in expanded or standard form) and counting strategies (e.g., 156 can be 1 hundred, 5 tens, 6 ones; 1 hundred, 4 tens, 16 ones;15 tens, 6 ones).

Bridges in Mathematics

Teachers Guides:
Unit 2: M1-S4, pp. 18-20, M1-S5, pp. 23-26, M1-S5, pp. 28-30
Unit 3: M1-S4, pp. 20-21
Unit 5: M1-S4, pp. 22-23

Number Corner

Teachers Guide:
November: pp. 41

Bridges in Mathematics

Teachers Guide:
Unit 2: M2-S3, pp. 4-7
2.NS. 2 The student will demonstrate an understanding of the ten-to-one relationships of the base 10 number system to represent, compare, and order whole numbers up to 999 . The student will:

> Compare two whole numbers, each 999 or less, represented concretely, pictorially, or symbolically, using words (greater than, less than, or equal to) and symbols (>, <, or $=$). Justify reasoning orally, in writing, or with a model.

Order up to three	Bridges in Mathematics
whole numbers,	Teachers Guide:
each 999 or less,	Unit 8: M1-S1, p.5
represented	
concretely,	
pictorially, or	
symbolically from	
least to greatest	
and greatest	
to least.	

whole numbers, each 999 or less, represented concretely, pictorially, or least to greatest and greatest to least.

Bridges in Mathematics
Teachers Guide:
Unit 3: M3-S1, pp 3-8
Unit 5: M1-S2, pp. 9-12; S4, pp. 21-24; S5, pp. 25-30
Number Corner
Teachers Guide:
October: pp. 41-43, 45
December: pp. 44-46

Teachers Guide:
Unit 8: M1-S1, p.
2.NS. 3 The student will use mathematical reasoning and justification to solve contextual problems that involve partitioning models into equal-sized parts (halves, fourths, eighths, thirds, and sixths). The student will:

2.NS.3.a	Model and describe fractions as representing equal-size parts of a whole.	Bridges in Mathematics Student Books: Unit 6: M4-S1, pp. 4-6, S4, pp. 23-28 Unit 7: M2-S2, pp. 10-14, M2-S3, pp. 16-18 Number Corner Teachers Guide: April: pp. 8, 12
2.NS.3.b	Describe the relationship between the number of fractional parts needed to make a whole and the size of the parts (i.e., as the whole is divided into more parts, each part becomes smaller).	Bridges in Mathematics Teachers Guide: Unit 6: M4-S1, pp. 4-6, S4, pp. 23-28 Unit 7: M2-S2, pp. 10-14, M2-S3, pp. 16-20 Number Corner Teachers Guide: April: p. 9
2.NS.3.c	Compose the whole for a given fractional part and its value (in context) for halves, fourths, eighths, thirds, and sixths (e.g., when given onefourth, determine how many pieces would be needed to make four-fourths).	Bridges in Mathematics Teachers Guide: Unit 6: M4-S1, pp. 4-6 Unit 7: M2-S2, pp. 16-20

2.NS. 3 The student will use mathematical reasoning and justification to solve contextual problems that involve partitioning models into equal-sized parts (halves, fourths, eighths, thirds, and sixths). The student will:

2.NS.3.d	Using same-size fraction pieces, from a region/ area model, count by unit fractions up to two wholes (e.g., zero one-fourths, one one-fourth, two one-fourths, three one-fourths, four one-fourths, five one-fourths; or zero-fourths, one-fourth, two-fourths, three-fourths, four-fourths, fivefourths).	This standard is beyond the scope of this program.
	2.NS.3.e Given a context, represent, name, and write fractional parts of a whole for halves, fourths, eighths, thirds, and sixths using:	
2.NS.3.e.i	region/area models (e.g., pie pieces, pattern blocks, geoboards);	Number Corner Teachers Guide: January: pp. 15-17 February: pp. 14-15
2.NS.3.e.ii	length models (e.g., paper fraction strips, fraction bars, rods, number lines); and	Bridges in Mathematics Teachers Guide: Unit 7: M2-S3, pp. 16-20
2.NS.3.e.iii	set models (e.g., chips, counters, cubes).	Number Corner Teachers Guide: April: pp. 10-11

2.NS.3 The student will use mathematical reasoning and justification to solve contextual problems that involve partitioning models into equal-sized parts (halves, fourths, eighths, thirds, and sixths). The student will:

Compare unit	
fractions for	
halves, fourths,	
eighths, thirds,	
and sixths using	
words (greater	
than, less than	This standard is beyond the scope of this program.
or equal to) and	
symbols ($>,<$,	
=), with region/	
area and length	
models.	

2.NS. 4 The student will solve problems that involve counting and representing money amounts up to $\$ 2.00$. The student will:

2.NS.4.a	Identify a quarter and its value and determine multiple ways to represent the value of a quarter using pennies, nickels, and/or dimes.	Bridges in Mathematics Teachers Guide: Unit 5: M2-S1, pp. 7-9; S2, pp. 12-15
2.NS.4.b	Count by ones, fives, tens, and twenty-fives to determine the value of a collection of mixed coins and one-dollar bills whose total value is $\$ 2.00$ or less.	Bridges in Mathematics Teachers Guide: Unit 5: M1-S2, pp. 12-13, S4, pp. 24-25, S5, pp. 28-30 Number Corner Teachers Guide: March: pp. 18-19
2.NS.4.c	Construct a set of coins and/or bills to total a given amount of money whose value is $\$ 2.00$ or less.	Bridges in Mathematics Teacher Guides: Unit 5: M2-S2, pp. 13-15 Unit 7: M3-S3, pp. 12-13
2.NS.4.d	Represent the value of a collection of coins and one-dollar bills (limited to $\$ 2.00$ or less) using the cent ($($) and dollar (\$) symbols and decimal point (.).	Bridges in Mathematics Teachers Guide: Unit 5: M2-S5, pp. 28-30 Number Corner Teachers Guide: March: pp. 18-19

Computation \& Estimation

Standard Descriptor Citations

2.CE. 1 The student will recall with automaticity addition and subtraction facts within 20 and estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition and subtraction with whole numbers where addends or minuends do not exceed 100 .
The student will:

Apply strategies (e.g., rounding to the nearest 10, compatible numbers, other number relationships) o estimate a solution for singlestep addition or subtraction problems, including those in context, where addends and minuends do not exceed 100 .

> Apply strategies (e.g., the use of concrete and pictorial models, place value, properties of addition, the relationship between addition and subtraction) to determine the sum or difference of two whole numbers where addends or minuends do not exceed 100 .

Bridges in Mathematics

Teacher Guides:
Unit 1: M3-S5, pp. 23-27
Unit 2: M1-S3, pp. 14-16, S5, pp. 26-27, S6, pp. 30-36
Unit 3: M2-S1, pp. 3-6, S2, pp. 8-11, S4, pp. 20-22
2.CE. 1 The student will recall with automaticity addition and subtraction facts within 20 and estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition and subtraction with whole numbers where addends or minuends do not exceed 100 . The student will:

2.CE.1.c	Represent, solve, and justify solutions to singlestep and multistep contextual problems (e.g., join, separate, part-part-whole, comparison) involving addition or subtraction of whole numbers where addends or minuends do not exceed 100.	Bridges in Mathematics Teachers Guide: Unit 1: M4-S2, pp. 10-14 Unit 3: M2-S3, pp. 14-17, M3-S2, pp. 10-13, S4, pp. 23-26, S5, pp. 28-30, S6, pp. 34-36
2.CE.1.d	Demonstrate fluency with addition and subtraction within 20 by applying reasoning strategies (e.g., doubles, near doubles, make-a-ten, compensations, inverse relationships).	Bridges in Mathematics Teachers Guide: Unit 1: M3-S1, pp. 4-5, S2 pp. 11-12, S4, pp. 24-28 Number Corner Teachers Guide: September: pp. 37-44 October: pp. 33-38 November: pp. 28-37 December: pp. 34-40

2.CE.1.e	Recall with automaticity addition and subtraction facts within 20.
	Bridges in Mathematics Teachers Guide: Unit 1: M2-S5, pp. 24-25 Unit 3: M3-S5, pp. 31-32 Unit 4: M2-S5, pp. 25-26 Number Corner
	Teachers Guide: February: pp. 30-31, 34 Farch: p. 30 April: p. 28

2.CE. 1 The student will recall with automaticity addition and subtraction facts within 20 and estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition and subtraction with whole numbers where addends or minuends do not exceed 100 . The student will:

```
Use patterns,
models, and
strategies
to make
```

2.CE.1.f
2.CE.1.g

Determine the

 missing number in an equation (number sentence) through modeling and justification with addition and subtraction within 20 (e.g., $3+{ }_{+}=$ 5 or $\ldots+2=5$;$5-\ldots=3$ or $5-2$
$=$ _ .

> Use inverse relationships to write all related facts connected to a given addition or subtraction fact model within 20 (e.g., given a model for $3+4=$ 7, write $4+3=7$, $7-4=3$, and 7 $3=4)$.

Number Corner

Teachers Guide:
September: pp. 13-14
February: pp. 9-12, 13-14

This standard is beyond the scope of this program.

Number Corner

Teachers Guide:
September: pp. 10-11
2.CE. 1 The student will recall with automaticity addition and subtraction facts within 20 and estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition and subtraction with whole numbers where addends or minuends do not exceed 100 . The student will:

Describe the not
equal symbol (\ddagger)
as representing a
relationship where
expressions on

2.CE.1.i

2.CE.1.j
expressions on
either side of
the not equal
symbol represent different values and justify
reasoning.

```
Represent
and justify the
relationship
between values
and expressions
as equal or not
equal using
appropriate
models and/or
symbols (e.g., 9 +
24 = 10 + 23;45
-9 = 46-10; 15
+16 = 31 +15).
```

This standard is beyond the scope of this program.

This standard is beyond the scope of this program.
. Measurement \& Geometry

Standard Descriptor Citations

2.MG.1 The student will reason mathematically using standard units (U.S. Customary) with appropriate tools to estimate, measure, and compare objects by length, weight, and liquid volume to the nearest whole unit. The student will:
2.MG.1.a Explain the purpose of various measurement tools and how to use them appropriately by:

identifying a ruler as an instrument

 to measure length;
Bridges in Mathematics

Teachers Guide:
Unit 4: M1-S1, pp. 4-6; S2, pp. 10; S4, pp. 18-19; S5, pp. 22-24
Number Corner
Teachers Guide:
April: pp. 17-18
May: pp. 21-22
2.MG.1.a.ii

identifying

different types
of scales as instruments to measure weight; and
identifying different types of measuring cups as instruments to measure liquid volume.

This standard is beyond the scope of this program.

Standard

2.MG.1 The student will reason mathematically using standard units (U.S. Customary) with appropriate tools to estimate, measure, and compare objects by length, weight, and liquid volume to the nearest whole unit. The student will:
2.MG.1.b Use U.S. Customary units to estimate, measure, and compare the two for reasonableness:
2.MG.1.b.i
2.MG.1.b.ii
2.MG.1.b.iii

Bridges in Mathematics

Teachers Guide:
Unit 4: M1-S4, pp. 18-19, S5, pp. 22-25
Unit 8: M2-S4, pp. 19-20, M3-S1, pp. 4-6, S3, pp. 12-14
Number Corner
Teachers Guide:
May: pp. 21-26
the weight of an object to the nearest pound, using a scale; and
the liquid volume of a container to the nearest cup, using a measuring cup.
2.MG.2 The student will demonstrate an understanding of the concept of time to the nearest five minutes, using analog and digital clocks. The student will:

2.MG.2.a	Identify the number of minutes in an hour (60 minutes) and the number of hours in a day (24 hours).	Number Corner Teachers Guide: September: pp. 17-18 December: pp. 14-18

2.MG.2.b

```
Determine the
unit of time
(minutes, hours,
days, or weeks)
that is most
appropriate
when measuring
a given activity
or context and
explain reasoning
(e.g., Would you
measure the
time it takes to
brush your teeth
in minutes or
hours?).
```

This standard is beyond the scope of this program.
Show, tell, and
write time to
the nearest five
minutes, using
analog and
digital clocks.

Number Corner
 Teachers Guide:
 February: pp. 17-20

Show, tell, and	
write time to	
the nearest five	This standard is beyond the scope of this program.
minutes, using analog and digital clocks.	

2.MG.3 The student will identify, describe, and create plane figures (including circles, triangles, squares, and rectangles) that have at least one line of symmetry and explain its relationship with congruency. The student will:

2.MG.3.a	Explore a figure using a variety of tools (e.g., paper folding, geoboards, drawings) to show and justify a line of symmetry, if one exists.	Bridges in Mathematics Teachers Guide:

Create figures with at least one line of symmetry using various concrete and pictorial representations.

This standard is beyond the scope of this program.

This standard is beyond the scope of this program.
2.MG.4 The student will identify, describe, and create plane figures (including circles, triangles, squares, and rectangles) that have at least one line of symmetry and explain its relationship with congruency. The student will:

2.MG.4.a $\left.\quad$	Trace faces of
solid figures	
(cubes and	
rectangular	
prisms) to create	
the set of plane	
figures related to	
the solid figure.	\right\rvert\, This standard is beyond the scope of this program.

Compare and contrast models and nets (cutouts)

 of cubes and rectangular prisms (e.g., number and shapes of faces, edges, vertices).This standard is beyond the scope of this program.

Given a concrete	Number Corner
or pictorial	Teachers Guide:
model, name	March: pp. 10-12
and describe	
the solid figure	
(sphere, cube,	
and rectangular	
prism) by its	
characteristics	
(e.g., number of	
edges, number of	
vertices, shapes	
of faces).	

Standard

2.MG. 4 The student will identify, describe, and create plane figures (including circles, triangles, squares, and rectangles) that have at least one line of symmetry and explain its relationship with congruency. The student will:

Compare and	Bridges in Mathematics
contrast plane	Teachers Guide:
and solid figures	Unit 6: M1-S5, pp. 26-30
(circles/spheres,	
squares/cubes,	
and rectangles/	
rectangular	
prisms) according	
to their	
characteristics	
(e.g., number and	
shapes of their	
faces, edges,	
vertices).	

Probability \& Statistics

Standard Descriptor Citations

2.PS.1 The student will apply the data cycle (pose questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on pictographs and bar graphs. The student will:

2.PS.1.a	Pose questions, given a predetermined context, that require the collection of data (limited to 25 or fewer data points for no more than	Bridges in Mathematics
		Teachers Guide:
		Unit 1: M1-S4, pp. 18-21
		Unit 8: M4-S1, pp. 4-6
		Number Corner
		Teachers Guide:
		December: pp. 21-22, 24-25

> Determine the data needed to answer a posed question and collect the data using various methods (e.g., voting; creating lists, tables, or charts; tallying).

Bridges in Mathematics

Teachers Guide:
Unit 3: M4-S1, pp. 4-5
Unit 8: M4-S1, pp. 4-6, S2, pp. 7-9

```
Organize and
represent a
data set using a
pictograph where
each symbol
represents up
to 2 data points.
Determine and
use a key to assist
in the analysis of
the data.
```


Bridges in Mathematics

```
Teachers Guide:
Unit 1: M1-S4, pp. 18-21
Number Corner
Teachers Guide:
December: pp. 21-22, 26
January: pp. 8-10
```


Standard

2.PS. 1 The student will apply the data cycle (pose questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on pictographs and bar graphs. The student will:

```
Organize and
represent a data
set using a bar
graph with a title
and labeled axes
(limited to 25 or
fewer data points
for up to six
categories, and
limit increments
of scale to
multiples of 1 or 2).
```

2.PS.1 The student will apply the data cycle (pose questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on pictographs and bar graphs. The student will:
2.PS.1.e Analyze data represented in pictographs and bar graphs and communicate results:

```
ask and answer Bridges in Mathematics
questions
about the data
represented in
pictographs and
bar graphs (e.g.,
total number
of data points
represented,
how many in
each category,
how many more
or less are in
one category
than another).
Pictograph keys
will be limited
to symbols
representing 1,
2,5, or 10 pieces
of data and bar
graphs will be
limited to scales
with increments
in multiples of 1,
2,5, or 10; and
draw conclusions

\section*{2 Patterns, Functions \& Algebra}

\section*{Standard Descriptor Citations}
2.PF. 1 The student will describe, extend, create, and transfer repeating and increasing patterns (limited to addition of whole numbers) using various representations. The student will:
\begin{tabular}{|c|c|c|}
\hline 2.PF.1.a & Identify and describe repeating and increasing patterns. & \begin{tabular}{l}
Bridges in Mathematics \\
Teachers Guide: \\
Unit 2: M4-S2, pp. 8-10, S3, pp. 12-13 \\
Unit 5:M4-S1, pp. 4-7, S2, pp. 10-13, S3, pp. 16-19, S4, pp. 22-24 \\
Number Corner \\
Teachers Guide: \\
October: pp. 10-11
\end{tabular} \\
\hline 2.PF.1.b & Analyze a repeating or increasing pattern and generalize the change to extend the pattern using objects, pictures, and numbers. & \begin{tabular}{l}
Bridges in Mathematics \\
Teachers Guide: \\
Unit 2: M4-S2, pp. 8-10 \\
Unit 5: M4-S1, pp. 4-7, S2, pp. 10-13, S3, pp. 16-19, S4, pp. 22-24 \\
Number Corner \\
Teachers Guide: \\
October: pp. 10-11 \\
November: pp. 9-10
\end{tabular} \\
\hline 2.PF.1.c & Create a repeating or increasing pattern using various representations (e.g., objects, pictures, numbers). & \begin{tabular}{l}
Bridges in Mathematics \\
Teachers Guide: \\
Unit 2: M4-S2, pp. 8-10 \\
Unit 5: M4-S1, pp. 4-7, S2, pp. 10-13, S3, pp. 16-19, S4, pp. 22-24
\end{tabular} \\
\hline 2.PF.1.d & Transfer a given repeating or increasing pattern from one form to another (e.g., objects, pictures, numbers) and explain the connection between the two patterns. & This standard is beyond the scope of this program. \\
\hline
\end{tabular}```

