

Bridges Second Edition CORRELATIONS

Mathematics Standards of Learning for Virginia Public Schools

GRADE 2

2 Number & Number Sense

Standard	Descriptor	Citations
2.NS.1 The stud	dent will utilize flex	ible counting strategies to determine and describe quantities up to 200. The student will:
2.NS.1.a	Represent forward counting patterns when counting by groups of 2 up to at least 50, starting at various multiples of 2 and using a variety of tools (e.g., objects, number lines, hundreds charts).	This standard is beyond the scope of this program.
2.NS.1.b	Represent forward counting patterns created when counting by groups of 5s, 10s, and 25s starting at various multiples up to at least 200 using a variety of tools (e.g., objects, number lines, hundreds charts).	Bridges in Mathematics Teachers Guide: Unit 2: M3–S2, pp. 10–11, S3, pp. 14–17 Unit 3: M1–S2, pp. 7–12, S3, pp. 14–18 Unit 5: M2–S1, pp. 5–9 Number Corner Teachers Guide: September: pp. 48–50 November: pp. 40–42
2.NS.1.c	Describe and use patterns in skip counting by multiples of 2 (to at least 50), and multiples of 5, 10, and 25 (to at least 200) to justify the next number in the counting sequence.	Bridges in Mathematics Teachers Guide: Unit 5: M4–S1, pp. 4–7, S2, pp. 10–13 Number Corner Teachers Guide: October: p. 44, 46

Standard	Descriptor	Citations
2.NS.1 The stu	ıdent will utilize flex	ible counting strategies to determine and describe quantities up to 200. The student will:
2.NS.1.d	Represent forward counting patterns when counting by groups of 100 up to at least 1,000 starting at 0 using a variety of tools (e.g., objects, number lines, calculators, one thousand charts).	Bridges in Mathematics Teachers Guide: Unit 5: M1–S5, pp. 26–28, M3–S4, pp. 19–20, S5, pp. 22–24 Number Corner Teachers Guide: October: pp. 44, 46 November: pp. 40–42 January: pp. 36–42
2.NS.1.e	Represent backward counting patterns when counting by groups of 10 from 200 or less using a variety of tools including objects, number lines, calculators, and hundreds charts.	Number Corner Teachers Guide: September: pp. 51–52 December: pp. 43–44
2.NS.1.f	Describe and use patterns in skip counting backwards by 10s (from at least 200) to justify the next number in the counting sequence.	This standard is beyond the scope of this program.

Standard	Descriptor	Citations
2.NS.1 The stu	udent will utilize flex	ible counting strategies to determine and describe quantities up to 200. The student will:
2.NS.1.g	Choose a reasonable estimate up to 1,000 when given a contextual problem (e.g., What would be the best estimate for the number of students in our school – 5, 50, or 500?).	Bridges in Mathematics Teachers Guide: Unit 2: M1–S1, pp. 3–8
2.NS.1.h	Represent even numbers (up to 50) with concrete objects, using two equal groups or two equal addends.	Bridges in MathematicsTeachers Guides:Unit 1: M3–S1, pp 9–10; S2, pp. 9–12Unit 3: M4–S1, pp. 5–6Number CornerStudent Books:September: pp. 29–34October: p. 9
2.NS.1.i	Represent odd numbers (up to 50) with concrete objects, using two equal groups with one leftover or two equal addends plus 1.	Bridges in Mathematics Teachers Guides: Unit 1: M3–S1, pp 9–10; S2, pp. 9–12 Unit 3: M4–S1, pp. 5–6 Number Corner Teachers Guide: September: pp. 29–34 October: p. 9
2.NS.1.j	Determine whether a number (up to 50) is even or odd using concrete objects and justify reasoning (e.g., dividing collections of objects into two equal groups, pairing objects).	Bridges in Mathematics Teachers Guides: Unit 1: M3–S1, pp 9–10; S2, pp. 9–12 Unit 3: M4–S1, pp. 5–6 Number Corner Teachers Guide: September: pp. 29–34

Standard	Descriptor	Citations
	dent will demonstra up to 999. The stud	ate an understanding of the ten-to-one relationships of the base 10 number system to represent, compare, and order dent will:
2.NS.2.a	Write the three-digit whole number represented by a given model (e.g., concrete objects, pictures of base 10 blocks).	Bridges in Mathematics Teachers Guides: Unit 2: M1–S1, pp. 5–7 Unit 8: M1–S1, pp. 4–5
2.NS.2.b	Read, write, and represent three- digit numbers in standard form, expanded form, and word form, using concrete or pictorial representations.	Bridges in Mathematics Teachers Guides: Unit 5: M1–S2, pp. 10–12 Unit 8: M1–S2, pp. 11–12
2.NS.2.c	Apply patterns within the base 10 system to determine and communicate, orally and in written form, the place (ones, tens, hundreds) and value of each digit in a three-digit whole number (e.g., in 352, the 5 represents 5 tens and its value is 50).	Bridges in Mathematics Teachers Guides: Unit 2: M1–S5, pp. 23–26, S6, pp. 28–30

Standard	Descriptor	Citations	
	2.NS.2 The student will demonstrate an understanding of the ten-to-one relationships of the base 10 number system to represent, compare, and order whole numbers up to 999. The student will:		
2.NS.2.d	Investigate and explain the ten-to-one relationships among ones, tens, and hundreds, using models.	Bridges in Mathematics Teachers Guide: Unit 2: M1–S5, pp. 23–26, M1–S5, pp. 28–30 Unit 5: M3–S1, pp. 4–8 Number Corner Teachers Guide: November: pp. 41 December: pp. 44–46	
2.NS.2.e	Compose and decompose whole numbers up to 200 by making connections between a variety of models (e.g., base 10 blocks, place value cards, presented orally, in expanded or standard form) and counting strategies (e.g., 156 can be 1 hundred, 5 tens, 6 ones; 1 hundred, 4 tens, 16 ones; 15 tens, 6 ones).	Bridges in Mathematics Teachers Guides: Unit 2: M1–S4, pp. 18–20, M1–S5, pp. 23–26, M1–S5, pp. 28–30 Unit 3: M1–S4, pp. 20–21 Unit 5: M1–S4, pp. 22–23 Number Corner Teachers Guide: November: pp. 41	
2.NS.2.f	Plot and justify the position of a given number up to 100 on a number line with pre-marked benchmarks of 1s, 2s, 5s, 10s, or 25s.	Bridges in Mathematics Teachers Guide: Unit 2: M2–S3, pp. 4–7	

Standard	Descriptor	Citations
	udent will demonstra s up to 999. The stud	ate an understanding of the ten-to-one relationships of the base 10 number system to represent, compare, and order dent will:
2.NS.2.g	Compare two whole numbers, each 999 or less, represented concretely, pictorially, or symbolically, using words (greater than, less than, or equal to) and symbols (>, <, or =). Justify reasoning orally, in writing, or with a model.	Bridges in Mathematics Teachers Guide: Unit 3: M3–S1, pp 3–8 Unit 5: M1–S2, pp. 9–12; S4, pp. 21–24; S5, pp. 25–30 Number Corner Teachers Guide: October: pp. 41–43, 45 December: pp. 44–46
2.NS.2.h	Order up to three whole numbers, each 999 or less, represented concretely, pictorially, or symbolically from least to greatest and greatest to least.	Bridges in Mathematics Teachers Guide: Unit 8: M1–S1, p. 5

Standard	Descriptor	Citations	
	2.NS.3 The student will use mathematical reasoning and justification to solve contextual problems that involve partitioning models into equal-sized parts halves, fourths, eighths, thirds, and sixths). The student will:		
2.NS.3.a	Model and describe fractions as representing equal-size parts of a whole.	Bridges in Mathematics Student Books: Unit 6: M4–S1, pp. 4–6, S4, pp. 23–28 Unit 7: M2–S2, pp. 10–14, M2–S3, pp. 16–18 Number Corner Teachers Guide: April: pp. 8, 12	
2.NS.3.b	Describe the relationship between the number of fractional parts needed to make a whole and the size of the parts (i.e., as the whole is divided into more parts, each part becomes smaller).	Bridges in Mathematics Teachers Guide: Unit 6: M4–S1, pp. 4–6, S4, pp. 23–28 Unit 7: M2–S2, pp. 10–14, M2–S3, pp. 16–20 Number Corner Teachers Guide: April: p. 9	
2.NS.3.c	Compose the whole for a given fractional part and its value (in context) for halves, fourths, eighths, thirds, and sixths (e.g., when given one- fourth, determine how many pieces would be needed to make four-fourths).	Bridges in Mathematics Teachers Guide: Unit 6: M4–S1, pp. 4–6 Unit 7: M2–S2, pp. 16–20	

Standard	Descriptor	Citations
		ematical reasoning and justification to solve contextual problems that involve partitioning models into equal-sized parts d sixths). The student will:
2.NS.3.d	Using same-size fraction pieces, from a region/ area model, count by unit fractions up to two wholes (e.g., zero one-fourths, one one-fourths, three one-fourths, four one-fourths, five one-fourths, five one-fourths, one-fourths, two-fourths, three-fourths, three-fourths, four-fourths, five- fourths).	This standard is beyond the scope of this program.
	2.NS.3.e Given a cregion/area models (e.g.,	context, represent, name, and write fractional parts of a whole for halves, fourths, eighths, thirds, and sixths using: Number Corner Teachers Guide:
2.NS.3.e.i	pie pieces, pattern blocks, geoboards);	January: pp. 15–17 February: pp. 14–15
2.NS.3.e.ii	length models (e.g., paper fraction strips, fraction bars,	Bridges in Mathematics Teachers Guide: Unit 7: M2–S3, pp. 16–20
	rods, number lines); and	
2.NS.3.e.iii	set models (e.g., chips, counters, cubes).	Number Corner Teachers Guide: April: pp. 10–11

Standard	Descriptor	Citations
		ematical reasoning and justification to solve contextual problems that involve partitioning models into equal-sized parts d sixths). The student will:
2.NS.3.f	Compare unit fractions for halves, fourths, eighths, thirds, and sixths using words (greater than, less than or equal to) and symbols (>, <, =), with region/ area and length models.	This standard is beyond the scope of this program.

Standard	Descriptor	Citations
2.NS.4 The stu	dent will solve prob	plems that involve counting and representing money amounts up to \$2.00. The student will:
2.NS.4.a	Identify a quarter and its value and determine multiple ways to represent the value of a quarter using pennies, nickels, and/or dimes.	Bridges in Mathematics Teachers Guide: Unit 5: M2–S1, pp. 7–9; S2, pp. 12–15
2.NS.4.b	Count by ones, fives, tens, and twenty-fives to determine the value of a collection of mixed coins and one-dollar bills whose total value is \$2.00 or less.	Bridges in Mathematics Teachers Guide: Unit 5: M1–S2, pp. 12–13, S4, pp. 24–25, S5, pp. 28–30 Number Corner Teachers Guide: March: pp. 18–19
2.NS.4.c	Construct a set of coins and/or bills to total a given amount of money whose value is \$2.00 or less.	Bridges in Mathematics Teacher Guides: Unit 5: M2–S2, pp. 13–15 Unit 7: M3–S3, pp. 12–13
2.NS.4.d	Represent the value of a collection of coins and one-dollar bills (limited to \$2.00 or less) using the cent (¢) and dollar (\$) symbols and decimal point (.).	Bridges in Mathematics Teachers Guide: Unit 5: M2–S5, pp. 28–30 Number Corner Teachers Guide: March: pp. 18–19

2 Computation & Estimation

Standard	Descriptor	Citations
	problems, including	automaticity addition and subtraction facts within 20 and estimate, represent, solve, and justify solutions to single-step those in context, using addition and subtraction with whole numbers where addends or minuends do not exceed 100.
2.CE.1.a	Apply strategies (e.g., rounding to the nearest 10, compatible numbers, other number relationships) to estimate a solution for single- step addition or subtraction problems, including those in context, where addends and minuends do not exceed 100.	This standard is beyond the scope of this program.
2.CE.1.b	Apply strategies (e.g., the use of concrete and pictorial models, place value, properties of addition, the relationship between addition and subtraction) to determine the sum or difference of two whole numbers where addends or minuends do not exceed 100.	Bridges in Mathematics Teacher Guides: Unit 1: M3–S5, pp. 23–27 Unit 2: M1–S3, pp. 14–16, S5, pp. 26–27, S6, pp. 30–36 Unit 3: M2–S1, pp. 3–6, S2, pp. 8–11, S4, pp. 20–22

Standard	Descriptor	Citations
	problems, including	a automaticity addition and subtraction facts within 20 and estimate, represent, solve, and justify solutions to single-step those in context, using addition and subtraction with whole numbers where addends or minuends do not exceed 100.
2.CE.1.c	Represent, solve, and justify solutions to single- step and multistep contextual problems (e.g., join, separate, part-part-whole, comparison) involving addition or subtraction of whole numbers where addends or minuends do not exceed 100.	Bridges in Mathematics Teachers Guide: Unit 1: M4–S2, pp. 10–14 Unit 3: M2–S3, pp. 14–17, M3–S2, pp. 10–13, S4, pp. 23–26, S5, pp. 28–30, S6, pp. 34–36
2.CE.1.d	Demonstrate fluency with addition and subtraction within 20 by applying reasoning strategies (e.g., doubles, near doubles, make-a-ten, compensations, inverse relationships).	Bridges in Mathematics Teachers Guide: Unit 1: M3–S1, pp. 4–5, S2 pp. 11–12, S4, pp. 24–28 Number Corner Teachers Guide: September: pp. 37–44 October: pp. 33–38 November: pp. 28–37 December: pp. 34–40
2.CE.1.e	Recall with automaticity addition and subtraction facts within 20.	Bridges in Mathematics Teachers Guide: Unit 1: M2–S5, pp. 24–25 Unit 3: M3–S5, pp. 31–32 Unit 4: M2–S5, pp. 25–26 Number Corner Teachers Guide: February: pp. 30–31, 34 March: p. 30 April: p. 28

Standard	Descriptor	Citations
	problems, including	n automaticity addition and subtraction facts within 20 and estimate, represent, solve, and justify solutions to single-step those in context, using addition and subtraction with whole numbers where addends or minuends do not exceed 100.
2.CE.1.f	Use patterns, models, and strategies to make generalizations about the algebraic properties for fluency (e.g., $4 +$ 3 is equal to $3 +$ 4; 0 + 8 = 8).	This standard is beyond the scope of this program.
2.CE.1.g	Determine the missing number in an equation (number sentence) through modeling and justification with addition and subtraction within 20 (e.g., $3 + _ = 5$ or $_ + 2 = 5$; $5 - _ = 3$ or $5 - 2 = _$).	Number Corner Teachers Guide: September: pp. 13–14 February: pp. 9–12, 13–14
2.CE.1.h	Use inverse relationships to write all related facts connected to a given addition or subtraction fact model within 20 (e.g., given a model for $3 + 4 =$ 7, write $4 + 3 =$ 7, 7 - 4 = 3, and $7 -3 =$ 4).	Number Corner Teachers Guide: September: pp. 10–11

Standard	Descriptor	Citations
	problems, including	automaticity addition and subtraction facts within 20 and estimate, represent, solve, and justify solutions to single-step those in context, using addition and subtraction with whole numbers where addends or minuends do not exceed 100.
2.CE.1.i	Describe the not equal symbol (≠) as representing a relationship where expressions on either side of the not equal symbol represent different values and justify reasoning.	This standard is beyond the scope of this program.
2.CE.1.j	Represent and justify the relationship between values and expressions as equal or not equal using appropriate models and/or symbols (e.g., 9 + 24 = 10 + 23; 45 -9 = 46 - 10; 15 $+16 \neq 31 + 15$).	This standard is beyond the scope of this program.

2 Measurement & Geometry

Standard	Descriptor	Citations
		athematically using standard units (U.S. Customary) with appropriate tools to estimate, measure, and compare objects by to the nearest whole unit. The student will:
	2.MG.1.a Explain t	he purpose of various measurement tools and how to use them appropriately by:
2.MG.1.a.i	identifying a ruler as an instrument to measure length;	Bridges in Mathematics Teachers Guide: Unit 4: M1–S1, pp. 4–6; S2, pp. 10; S4, pp. 18–19; S5, pp. 22–24
	-	Number Corner Teachers Guide: April: pp. 17–18 May: pp. 21–22
2.MG.1.a.ii	identifying different types of scales as instruments to measure weight; and	This standard is beyond the scope of this program.
2.MG.1.a.iii	identifying different types of measuring cups as instruments to measure liquid volume.	This standard is beyond the scope of this program.

Standard	Descriptor	Citations	
	2.MG.1 The student will reason mathematically using standard units (U.S. Customary) with appropriate tools to estimate, measure, and compare objects by length, weight, and liquid volume to the nearest whole unit. The student will:		
	2.MG.1.b Use U.S.	Customary units to estimate, measure, and compare the two for reasonableness:	
2.MG.1.b.i	the length of an object to the nearest inch, using a ruler;	Bridges in Mathematics Teachers Guide: Unit 4: M1–S4, pp. 18–19, S5, pp. 22–25 Unit 8: M2–S4, pp. 19–20, M3–S1, pp. 4–6, S3, pp. 12–14	
		Number Corner Teachers Guide: May: pp. 21–26	
2.MG.1.b.ii	the weight of an object to the nearest pound, using a scale; and	This standard is beyond the scope of this program.	
2.MG.1.b.iii	the liquid volume of a container to the nearest cup, using a measuring cup.	This standard is beyond the scope of this program.	

Standard	Descriptor	Citations
2.MG.2 The stu	ıdent will demonstr	rate an understanding of the concept of time to the nearest five minutes, using analog and digital clocks. The student will:
2.MG.2.a	Identify the number of minutes in an hour (60 minutes) and the number of hours in a day (24 hours).	Number Corner Teachers Guide: September: pp. 17–18 December: pp. 14–18
2.MG.2.b	Determine the unit of time (minutes, hours, days, or weeks) that is most appropriate when measuring a given activity or context and explain reasoning (e.g., Would you measure the time it takes to brush your teeth in minutes or hours?).	This standard is beyond the scope of this program.
2.MG.2.c	Show, tell, and write time to the nearest five minutes, using analog and digital clocks.	Number Corner Teachers Guide: February: pp. 17–20
2.MG.2.d	Show, tell, and write time to the nearest five minutes, using analog and digital clocks.	This standard is beyond the scope of this program.

Standard	Descriptor	Citations
		describe, and create plane figures (including circles, triangles, squares, and rectangles) that have at least one line of hip with congruency. The student will:
2.MG.3.a	Explore a figure using a variety of tools (e.g., paper folding, geoboards, drawings) to show and justify a line of symmetry, if one exists.	Bridges in Mathematics Teachers Guide: Unit 6: M4–S2, pp. 11–14, S3, pp. 16–20 Number Corner Teachers Guide: December: pp. 14–18
2.MG.3.b	Create figures with at least one line of symmetry using various concrete and pictorial representations.	This standard is beyond the scope of this program.
2.MG.3.c	Describe the two resulting figures formed by a line of symmetry as being congruent (having the same shape and size).	This standard is beyond the scope of this program.

Standard	Descriptor	Citations	
	2.MG.4 The student will identify, describe, and create plane figures (including circles, triangles, squares, and rectangles) that have at least one line of symmetry and explain its relationship with congruency. The student will:		
2.MG.4.a	Trace faces of solid figures (cubes and rectangular prisms) to create the set of plane figures related to the solid figure.	This standard is beyond the scope of this program.	
2.MG.4.b	Compare and contrast models and nets (cutouts) of cubes and rectangular prisms (e.g., number and shapes of faces, edges, vertices).	This standard is beyond the scope of this program.	
2.MG.4.c	Given a concrete or pictorial model, name and describe the solid figure (sphere, cube, and rectangular prism) by its characteristics (e.g., number of edges, number of vertices, shapes of faces).	Number Corner Teachers Guide: March: pp. 10–12	

Standard	Descriptor	Citations
		describe, and create plane figures (including circles, triangles, squares, and rectangles) that have at least one line of nip with congruency. The student will:
2.MG.4.d	Compare and contrast plane and solid figures (circles/spheres, squares/cubes, and rectangles/ rectangular prisms) according to their characteristics (e.g., number and shapes of their faces, edges, vertices).	Bridges in Mathematics Teachers Guide: Unit 6: M1–S5, pp. 26–30

2 Probability & Statistics

Standard	Descriptor	Citations
		data cycle (pose questions; collect or acquire data; organize and represent data; and analyze data and communicate s and bar graphs. The student will:
2.PS.1.a	Pose questions, given a predetermined context, that require the collection of data (limited to 25 or fewer data points for no more than six categories).	Bridges in Mathematics Teachers Guide: Unit 1: M1–S4, pp. 18–21 Unit 8: M4–S1, pp. 4–6 Number Corner Teachers Guide: December: pp. 21–22, 24–25
2.PS.1.b	Determine the data needed to answer a posed question and collect the data using various methods (e.g., voting; creating lists, tables, or charts; tallying).	Bridges in Mathematics Teachers Guide: Unit 3: M4–S1, pp. 4–5 Unit 8: M4–S1, pp. 4–6, S2, pp. 7–9
2.PS.1.c	Organize and represent a data set using a pictograph where each symbol represents up to 2 data points. Determine and use a key to assist in the analysis of the data.	Bridges in Mathematics Teachers Guide: Unit 1: M1–S4, pp. 18–21 Number Corner Teachers Guide: December: pp. 21–22, 26 January: pp. 8–10

Standard	Descriptor	Citations	
	2.PS.1 The student will apply the data cycle (pose questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on pictographs and bar graphs. The student will:		
2.PS.1.d	Organize and represent a data set using a bar graph with a title and labeled axes (limited to 25 or fewer data points for up to six categories, and limit increments of scale to multiples of 1 or 2).	Bridges in Mathematics Teachers Guide: Unit 3: M4–S2, pp. 8–10 Unit 8: M4–S4, pp. 12–13 Number Corner Teachers Guide: December: pp. 26	

Standard	Descriptor	Citations	
	.PS.1 The student will apply the data cycle (pose questions; collect or acquire data; organize and represent data; and analyze data and communicate esults) with a focus on pictographs and bar graphs. The student will:		
	2.PS.1.e Analyze c	data represented in pictographs and bar graphs and communicate results:	
2.PS.1.e.i	ask and answer questions about the data represented in pictographs and bar graphs (e.g., total number of data points represented, how many in each category, how many more or less are in one category than another). Pictograph keys will be limited to symbols representing 1, 2, 5, or 10 pieces of data and bar graphs will be limited to scales with increments in multiples of 1,	Bridges in Mathematics Teachers Guide: Unit 3: M4–S3, pp. 13–15 Number Corner Teachers Guide: December: pp. 23–24 January: pp. 8–10	
2.PS.1.e.ii	2, 5, or 10; and draw conclusions about the data and make predictions based on the data.	This standard is beyond the scope of this program.	

2 Patterns, Functions & Algebra

Standard	Descriptor	Citations
	udent will describe, e ns. The student will:	extend, create, and transfer repeating and increasing patterns (limited to addition of whole numbers) using various
2.PF.1.a	Identify and describe repeating and increasing patterns.	Bridges in Mathematics Teachers Guide: Unit 2: M4–S2, pp. 8–10, S3, pp. 12–13 Unit 5:M4–S1, pp. 4–7, S2, pp. 10–13, S3, pp. 16–19, S4, pp. 22–24 Number Corner Teachers Guide: October: pp. 10–11
2.PF.1.b	Analyze a repeating or increasing pattern and generalize the change to extend the pattern using objects, pictures, and numbers.	Bridges in Mathematics Teachers Guide: Unit 2: M4–S2, pp. 8–10 Unit 5: M4–S1, pp. 4–7, S2, pp. 10–13, S3, pp. 16–19, S4, pp. 22–24 Number Corner Teachers Guide: October: pp. 10–11 November: pp. 9–10
2.PF.1.c	Create a repeating or increasing pattern using various representations (e.g., objects, pictures, numbers).	Bridges in Mathematics Teachers Guide: Unit 2: M4–S2, pp. 8–10 Unit 5: M4–S1, pp. 4–7, S2, pp. 10–13, S3, pp. 16–19, S4, pp. 22–24
2.PF.1.d	Transfer a given repeating or increasing pattern from one form to another (e.g., objects, pictures, numbers) and explain the connection between the two patterns.	This standard is beyond the scope of this program.