

Mathematics Standards of Learning for Virginia Public Schools

(4umber \& Number Sense

Standard Descriptor Citations

4.NS. 1 The student will use place value understanding to read, write, and identify the place and value of each digit in a nine-digit whole number. The student will:

Read nine-digit whole numbers,	Bridges in Mathematics		
presented in			
Teachers Guide:			
standard form,			
and represent the			
same number in			
written form.		\quad	Unit 2: M1-S1, pp. 3-9; S4, pp. 21-26; M2-S5, pp. 29-35
:---	\quad	Unit M1-S1, pp. 3-7; S2, pp. 9-14; S3, pp. 15-18; S5, pp. 25-32	
:---			
Neachers Guide:			
October: pp. 17-26			

```
Write nine-digit
whole numbers
in standard
form when the
numbers are
presented orally
or in written form
```


Bridges in Mathematics

```
Teachers Guide:
Unit 2: M1-S1, pp. 3-9; S4, pp. 21-26; M2-S5, pp. 29-35
Unit 4: M1-S1, pp. 3-7; S2, pp. 9-14; S3, pp. 15-18; S5, pp. 25-32
Number Corner
Teachers Guide:
October: pp. 17-26
```

```
Apply patterns
within the base
10 system to
determine and
communicate,
orally and in
written form, the
place and value
of each digit in a
nine-digit whole
number (e.g.,
in 568,165,724,
the 8 represents
8millions and
its value is
8,000,000).
```


Bridges in Mathematics

```
Teachers Guide:
Unit 2: M1-S1, pp. 3-9; S3, pp. 17-23
Unit 4: M1-S2, pp. 9-14; S3, pp. 15-18; S5, pp. 25-32
```


Number Corner

```
Teachers Guide:
October: pp. 17-26
```

4.NS. 2 The student will demonstrate an understanding of the base 10 system to compare and order whole numbers up to seven digits. The student will:

Compare two whole numbers up to seven digits	Bridges in Mathematics
each, using words	November: pp. 24-26
(greater than, less	December: pp. 15-20
than, equal to,	
not equal to) and/	
or using symbols	
$(>,<,=, \neq)$.	

Order up to four whole numbers
 Bridges in Mathematics

 up to seven digits each, from least to greatest or greatest to least.Teachers Guide:
November: pp. 24-26
December: pp. 15-20
4.NS.3 The student will use mathematical reasoning and justification to represent, compare, and order fractions (proper, improper, and mixed numbers with denominators 12 or less), with and without models. The student will:
Compare and
order no more
than four
fractions (proper
or improper),
and/or mixed
numbers, with
like denominators
by comparing the
number of parts
(numerators)
using
fractions with
denominators of
12 or less (e.g.,
$1 / 5<3 / 5$). Justify
comparisons
orally, in writing,
or with a model.*

Bridges in Mathematics

Teacher Guides:
Unit 3: M2-S3, pp. 17-20; M4-S3, pp. 13-16
Unit 7: M1-S2, pp. 7-14; S3, pp. 15-20; S4, pp. 21-27; S7, pp. 41-44
Number Corner
Teachers Guide:
January: pp. 26-28; 30-32

```
Compare and
order no more
than four
fractions (proper
or improper),
and/or mixed
numbers, with
like numerators
and unlike
denominators
by comparing
the size of the
parts using
fractions with
denominators of
12 or less (e.g.,
3/8<3/5). Justify
comparisons
orally, in writing,
or with a model.*
```

4.NS.3.b
4.NS.3 The student will use mathematical reasoning and justification to represent, compare, and order fractions (proper, improper, and mixed numbers with denominators 12 or less), with and without models. The student will:
4.NS.3.c

Compare two

 fractions (proper or improper) and/or mixed numbers using fractions with denominators of 12 or less, using the symbols $>$, <, and = (e.g., 2/3 $>1 / 7$). Justify comparisons orally, in writing, or with a model.*```
Use benchmarks
e.g., 0, 1/2, or
1) to compare
and order no
more than four
fractions (proper
Bridges in Mathematics
Teachers Guide:
Unit 3: M2-S5, pp. 28-31; M4-S3, pp. 13-16
Unit 7: M1-S2, pp. 7-14; S3, pp. 15-20; S4, pp. 21-27
Number Corner
Teachers Guide:
January: pp. 26-28; 30-32
```


## Bridges in Mathematics

Teachers Guide:
Unit 7: M1-S2, pp. 7-14; S3, pp. 15-20; S4, pp. 21-27; S6, pp. 35-39; S7, pp. 41-44; M2-S2, pp. 9-13; S2, pp. 15-18; M4-S4, pp. 17-19

## Number Corner

Teachers Guide:
January: pp. 26-28; 30-32
4.NS.3 The student will use mathematical reasoning and justification to represent, compare, and order fractions (proper, improper, and mixed numbers with denominators 12 or less), with and without models. The student will:

| 4.NS.3.e | Represent equivalent fractions with denominators of 12 or less, with and without models.* | Bridges in Mathematics <br> Teachers Guide: <br> Unit 3: M1-S2, pp. 8-10, S3, pp. 15-19; S6, pp. 33-36; M2-S1, pp. 3-8; S3, pp. 17-20; S4, pp. 21-26; M3-S1, pp. 3-8; S2, pp. 9-13 |
| :---: | :---: | :---: |
| 4.NS.3.f | Compose and decompose fractions (proper and improper) and/or mixed numbers with denominators of 12 or less, in multiple ways, with and without models.* | Bridges in Mathematics <br> Teachers Guide: <br> Unit 3: M2-S1, pp. 3-8; S2, pp. 9-15; S4, pp. 21-26 <br> Number Corner <br> Teachers Guide: <br> November: pp. 15-18 <br> January: pp. 20-21 |
| 4.NS.3.g | Represent the division of two whole numbers as a fraction given a contextual situation and a model (e.g., $3 / 5$ means the same as 3 divided by 5 or $3 / 5$ represents the amount of muffin each of five children will receive when sharing three muffins equally). | Bridges in Mathematics <br> Teachers Guide: <br> Unit 3: M1-S2, pp. 7-13 |

* On the state assessment, items measuring this objective are assessed without the use of a calculator.
4.NS. 4 The student will use mathematical reasoning and justification to represent, compare, and order decimals through thousandths, with and without models. The student will:

| 4.NS.4.a | Investigate and describe the ten-to-one place value relationship for decimals through thousandths, using concrete models (e.g., place value mats/charts, decimal squares, base 10 blocks). | Bridges in Mathematics <br> Teachers Guide: <br> Unit 3: M3-S1, pp. 3-8; S4, pp. 23-26; M4-S1, pp. 3-6; S2, pp. 7-11 <br> Number Corner <br> Teachers Guide: <br> October: pp. 8-14 <br> February: pp. 26-33 <br> March: pp. 26-31 <br> May: p. 24-28 |
| :---: | :---: | :---: |
| 4.NS.4.b | Represent and identify decimals expressed through thousandths, using concrete, pictorial, and numerical representations. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 3: M3-S1, pp. 3-8; S4, pp. 23-26; M4-S1, pp. 3-6; S2, pp. 7-11 <br> Number Corner <br> Teachers Guide: <br> October: pp. 8-14 <br> February: pp. 26-33 <br> March: pp. 26-31 <br> May: p. 24-28 |
| 4.NS.4.c | Read and write decimals expressed through thousandths, using concrete, pictorial, and numerical representations. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 3: M3-S1, pp. 3-8; S4, pp. 23-26; M4-S1, pp. 3-6; S2, pp. 7-11 <br> Number Corner <br> Teachers Guide: <br> October: pp. 8-14 <br> February: pp. 26-33 <br> March: pp. 26-31 <br> May: p. 24-28 |

4.NS.4 The student will use mathematical reasoning and justification to represent, compare, and order decimals through thousandths, with and without models. The student will:

|  | Identify and <br> communicate, <br> both orally and in <br> written form, the <br> place and value <br> of each digit in a <br> decimal through <br> thousandths <br> (e.g., given 0.385, <br> the 8 is in the <br> hundredths place <br> and has a value <br> of 0.08). | Bridges in Mathematics <br> Teachers Guide: |
| :--- | :--- | :--- |
| Unit 3: M3-S1, pp. 3-8; S4, pp. 23-26; M4-S1, pp. 3-6; S2, pp. 7-11 <br> Teachers Guide: <br> October: pp. 8-14 <br> February: pp. 26-33 <br> March: pp. 26-31 <br> May: p. 24-28 |  |  |

$$
\begin{aligned}
& \text { Compare using } \\
& \text { symbols (<, >, } \\
& \text { =) and/or words } \\
& \text { (greater than, } \\
& \text { less than, equal } \\
& \text { to) and order } \\
& \text { (least to greatest } \\
& \text { and greatest to } \\
& \text { least), a set of } \\
& \text { no more than } \\
& \text { four decimals } \\
& \text { expressed } \\
& \text { through } \\
& \text { thousandths, } \\
& \text { using multiple } \\
& \text { strategies (e.g., } \\
& \text { benchmarks, } \\
& \text { place value, } \\
& \text { number } \\
& \text { lines). Justify } \\
& \text { comparisons with } \\
& \text { a model, orally, } \\
& \text { and in writing. }
\end{aligned}
$$

4.NS. 5 The student will reason about the relationship between fractions and decimals (limited to halves, fourths, fifths, tenths, and hundredths) to identify and represent equivalencies. The student will:

```
Represent
fractions (proper
or improper)
and/or mixed
numbers as
decimals through
hundredths,
using multiple
representations,
limited to halves,
fourths, fifths,
tenths, and
hundredths.*
```

```
Identify and
model equivalent
relationships
between fractions
(proper or
improper) and/or
mixed numbers
and decimals,
using halves,
fourths, fifths,
tenths, and
hundredths.*
```


## Bridges in Mathematics

Teachers Guide:
Unit 7: M1-S2, pp. 7-14; S3, pp. 15-20; S4, pp. 21-27; S5, pp. 29-34; S6, pp. 35-39; S7, pp. 41-44; M2-S2, pp. 9-13
Number Corner
Teachers Guide:
March: pp. 17-24

```
Write the decimal Bridges in Mathematics
and fraction
equivalent for a
given model (e.g.,
1/4 = 0.25 or
0.25=1/4;1.25
= 5/4 or 11/4;
1.02=102/100 or
12/100).*
```

* On the state assessment, items measuring this objective are assessed without the use of a calculator.


## Computation \& Estimation

## Standard Descriptor Citations

4.CE.1 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition and subtraction with whole numbers. The student will:

| 4.CE.1.a | Determine and justify whether an estimate or an exact answer is appropriate when solving contextua problems involving addition and subtraction with whole numbers. Refine estimates by adjusting the final amount, using terms such as closer to, between, and a little more than. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 4: M1-S4, pp. 19-24; S5, pp. 26-31; S6, pp. 33-37; S7, pp. 39-41; M2-S1, pp. 4-6; S3, pp. 7-10; S3, pp. 11-16; S4, pp. 17-21 |
| :---: | :---: | :---: |
| 4.CE.1.b | Apply strategies (e.g., rounding to the nearest 100 or 1,000, using compatible numbers, other number relationships) to estimate a solution for single-step or multistep addition or subtraction problems with whole numbers, where addends or minuends do not exceed 10,000.* | Bridges in Mathematics <br> Teachers Guide: <br> Unit 4: M1-S4, pp. 19-24; S5, pp. 26-31; S6, pp. 33-37; S7, pp. 39-41; M2-S1, pp. 4-6; S3, pp. 7-10; S3, pp. 11-16; S4, pp. 17-21 |

4.CE.1 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition and subtraction with whole numbers. The student will:

$$
\begin{aligned}
& \text { Apply strategies } \\
& \text { (e.g., place } \\
& \text { value, properties } \\
& \text { of addition, } \\
& \text { other number } \\
& \text { relationships) } \\
& \text { and algorithms, } \\
& \text { including } \\
& \text { the standard } \\
& \text { algorithm, to } \\
& \text { determine the } \\
& \text { sum or difference } \\
& \text { of two whole } \\
& \text { numbers, where } \\
& \text { addends and } \\
& \text { minuends do not } \\
& \text { exceed } 10,000 \text {. }^{*}
\end{aligned}
$$

## Bridges in Mathematics <br> Teachers Guide:

Unit 4: M1-S4, pp. 19-24; S5, pp. 26-31; S6, pp. 33-37; S7, pp. 39-41;
M2-S1, pp. 4-6; S3, pp. 7-10; S3, pp. 11-16; S4, pp. 17-21

```
Estimate, Bridges in Mathematics
represent,
solve, and justify
solutions to single
step and multistep
contextual
problems involving
addition and
subtraction with
whole numbers
where addends
and minuends
do not exceed
1,000,000.
```

* On the state assessment, items measuring this objective are assessed without the use of a calculator.
4.CE. 2 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using multiplication with whole numbers, and single-step problems, including those in context, using division with whole numbers; and recall with automaticity the multiplication facts through $12 \times 12$ and the corresponding division facts. The student will:

| 4.CE.2.a | Determine and <br> justify whether <br> an estimate or an <br> exact answer is <br> appropriate when <br> solving contextual <br> problems involving <br> multiplication <br> and division of <br> whole numbers. <br> Refine estimates <br> by adjusting the <br> final amount, <br> using terms such <br> as closer to, <br> between, and a <br> little more than. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 1: M1-S5, pp. 31-38 |
| :--- | :--- | :--- |

4.CE.2.b automaticity the multiplication facts through $12 \times 12$ and the corresponding division facts.*

## Bridges in Mathematics

## Teachers Guide:

Unit 1: M1-S2, pp. 11-16; S4, pp. 23-29; M2-S3, pp. 13-19; S4, pp. 21-25; S6, pp. 33-37;
M3-S1, pp. 3-6; S2, pp. 7-10; S4, pp. 19-23

## Bridges in Mathematics

Teachers Guide:
Unit 1: M2-S6, pp. 33-37; M3-S3, pp. 11-17
Unit 2: M2-S5, pp. 29-35; M4-S5, pp. 21-23
Unit 7: M3-S3, pp. 11-14; S4, pp. 15-18
4.CE.2 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using multiplication with whole numbers, and single-step problems, including those in context, using division with whole numbers; and recall with automaticity the multiplication facts through $12 \times 12$ and the corresponding division facts. The student will:

> Identify and use
> the appropriate symbol to
> distinguish
> between
> expressions that
> are equal and expressions that are not equal, using addition, subtraction, multiplication, and division
> (e.g., $4 \times 12=8$
> $\times 6$ and $64 \div 8 \neq$
$8 \times 8$ ).

| 4.CE.2.e | Determine all factor pairs for a whole number 1 to 100, using concrete, pictorial, and numerical representations. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 1: M2-S1, pp. 3-6; S2, pp. 7-12; S5, pp. 27-32; M3-S1, pp. 3-6 <br> Number Corner <br> Teachers Guide: <br> October: pp. 30-31 <br> November: pp. 26-27 |
| :---: | :---: | :---: |
| 4.CE.2.f | Determine common factors and the greatest common factor of no more than three numbers. | This standard is beyond the scope of the program. <br> Note: Greatest common factor is covered in Grade 5, Unit 2, Module 4. |

4.CE.2 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using multiplication with whole numbers, and single-step problems, including those in context, using division with whole numbers; and recall with automaticity the multiplication facts through $12 \times 12$ and the corresponding division facts. The student will:
4.CE.2.g Apply strategies (e.g., rounding, place value, properties of multiplication and/or addition) and algorithms, including the standard algorithm, to estimate and determine the product of two whole numbers when given:

| 4.CE.2.g.i | a two-digit factor and a one-digit factor;* | Bridges in Mathematics <br> Teachers Guide: <br> Unit 2: M1-S4, pp. 21-25; M2-S1, pp. 3-9; S3, pp. 17-23; S5, pp. 29-35; M3-S5, pp. 23-27 <br> Number Corner <br> Teachers Guide: <br> September: pp. 44-52 <br> October: pp. 44-48 |
| :---: | :---: | :---: |
| 4.CE.2.g.ii | a three-digit factor and a onedigit factor;* or | Bridges in Mathematics <br> Teachers Guide: <br> Unit 2: M2-S3, pp. 17-23; S5, pp. 29-35; M3-S5, pp. 23-27 |
| 4.CE.2.g.iii | a two-digit factor and a two-digit factor.* | Bridges in Mathematics <br> Teachers Guide: <br> Unit 2: M2-S3, pp. 17-23; S5, pp. 29-35; M3-S5, pp. 23-27 <br> Number Corner <br> Teachers Guide: <br> September: pp. 44-52 <br> October: 44-48 |
| 4.CE.2.h | Estimate, represent, solve, and justify solutions to single-step and multistep contextual problems that involve multiplication with whole numbers. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 1: M1-S1, pp. 3-9; S2, pp. 11-16; S4, pp. 23-29 <br> Unit 2: M1-S4, pp. 21-25; M2-S1, pp. 3-9; S3, pp. 17-23 <br> Number Corner <br> Teachers Guide: <br> September: pp. 44-52 <br> October: 44-48 |

4.CE. 2 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using multiplication with whole numbers, and single-step problems, including those in context, using division with whole numbers; and recall with automaticity the multiplication facts through $12 \times 12$ and the corresponding division facts. The student will:

| 4.CE.2.i | Apply strategies (e.g., rounding, compatible numbers, place value) and algorithms, including the standard algorithm, to estimate and determine the quotient of two whole numbers, given a one-digit divisor and a two- or threedigit dividend, with and without remainders.* | Bridges in Mathematics <br> Teachers Guide: <br> Unit 1: M1-S5, pp. 31-38; S6, pp. 39-44 <br> Unit 2: M4-S1, pp. 3-6; S2, pp. 7-9; S3, pp. 11-14; S5, pp. 21-23 <br> Number Corner <br> Teachers Guide: <br> January: pp. 42-50 <br> February: pp. 44-48 |
| :---: | :---: | :---: |
| 4.CE.2.j | Estimate, represent, solve, and justify solutions to single-step contextual problems involving division with whole numbers. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 1: M1-S5, pp. 31-38; S6, pp. 39-44 <br> Unit 2: M4-S1, pp. 3-6; S2, pp. 7-9; S3, pp. 11-14; S5, pp. 21-23 <br> Number Corner <br> Teachers Guide: <br> January: pp. 42-50 <br> February: pp. 44-48 |
| 4.CE.2.k | Interpret the quotient and remainder when solving a contextual problem. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 2: M4-S1, pp. 3-6; S2, pp. 7-9; S3, pp. 11-14; S5, pp. 21-23 <br> Number Corner <br> Teachers Guide: <br> January: pp. 42-50 |

* On the state assessment, items measuring this objective are assessed without the use of a calculator.
4.CE.3 The student will estimate, represent, solve, and justify solutions to subtraction of fractions (proper, improper, and mixed numbers with like denominators of $2,3,4,5,6,8,10$, and 12), with and without models; and solve single-step contextual problems involving multiplication of a whole number (12 or less) and a unit fraction, with models.single-step problems, including those in context, using addition and subtraction. The student will:

| 4.CE.3.a | Estimate and determine the sum or difference of two fractions (proper or improper) and/or mixed numbers, having like denominators limited to 2, 3, 4, $5,6,8,10$, and 12 (e.g., $3 / 8+3 / 8$, $21 / 5+4 / 5,7 / 4-$ 5/4) and simplify the resulting fraction. Addition and subtraction with fractions may include regrouping.* | Bridges in Mathematics <br> Teachers Guide: <br> Unit 3: M1-S4, pp. 21-26; M2-S1, pp. 3-8; S2, pp. 9-16; S5, pp. 27-31; S6, pp. 33-37; M3-S3, pp. 15-21 <br> Number Corner <br> Teachers Guide: <br> February: pp. 36-38 <br> March: pp. 18-24 |
| :---: | :---: | :---: |
| 4.CE.3.b | Estimate, represent, solve, and justify solutions to singlestep contextual problems using addition and subtraction with fractions (proper or improper) and/or mixed numbers, having like denominators limited to 2, 3, 4, $5,6,8,10$, and 12, and simplify the resulting fraction. Addition and subtraction with fractions may include regrouping. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 3: M1-S4, pp. 21-26; M2-S1, pp. 3-8; S2, pp. 9-16; S5, pp. 27-31; S6, pp. 33-37; M3-S3, pp. 15-21 <br> Number Corner <br> Teachers Guide: <br> February: pp. 36-38 <br> March: pp. 18-24 |

4.CE. 3 The student will estimate, represent, solve, and justify solutions to subtraction of fractions (proper, improper, and mixed numbers with like denominators of $2,3,4,5,6,8,10$, and 12), with and without models; and solve single-step contextual problems involving multiplication of a whole number (12 or less) and a unit fraction, with models.single-step problems, including those in context, using addition and subtraction. The student will:

| 4.CE.3.c | Solve single- <br> step contextual <br> problems <br> involving <br> multiplication of <br> a whole number, <br> limited to 12 or <br> less, and a unit <br> fraction (e.g., 6 <br> $\times 1 / 3,1 / 5 \times 8$, <br> $2 \times 1 / 10)$, with <br> models.* | Bridges in Mathematics <br> Teachers Guide: <br> Unit 3: M2-S2, p.10; S6, pp. 33-37 |
| :--- | :--- | :--- |
|  | Number Corner <br> Teachers Guide: <br> January: pp. 20-21 <br> March: pp. 43-50 |  |
|  | May. 29-39 |  |
| Apply the inverse <br> property of <br> multiplication <br> in models (e.g., <br> use a visual <br> fraction model to <br> represent 4/4 or 1 <br> as the product of <br> $4 \times 1 / 4)$. | This standard is beyond the scope of the program. |  |

* On the state assessment, items measuring this objective are assessed without the use of a calculator.
4.CE. 4 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition and subtraction of decimals through the thousandths, with and without models. The student will:
4.CE.4.a Apply strategies (e.g., rounding to the nearest whole number, using compatible numbers) and algorithms, including the standard algorithm, to estimate and determine the sum or difference of two decimals through the thousandths, with and without models, in which:*
\(\left.$$
\begin{array}{l|l|l|}\hline \text { 4.CE.4.a.i } & \begin{array}{l}\text { decimals do } \\
\text { not exceed the } \\
\text { thousandths; and }\end{array} & \begin{array}{l}\text { Note: Subtraction with decimals is covered in Grade 5, Unit 3, Module 2. } \\
\text { Bridges in Mathematics } \\
\text { Teachers Guide: } \\
\text { Unit 3: M1-S2, pp. 7-13 } \\
\text { Number Corner }\end{array}
$$ <br>
Teachers Guide: <br>

May: pp. 24-28\end{array}\right]\)| Note: Subtraction with decimals is covered in Grade 5, Unit 3, Module 2. |
| :--- |

## Estimate, <br> represent, <br> solve, and justify solutions to single-step and multistep contextual problems using addition and subtraction of decimals through the thousandths.

* On the state assessment, items measuring this objective are assessed without the use of a calculator.

4 Measurement \& Geometry

## Standard Descriptor Citations

4.MG. 1 The student will reason mathematically to solve problems, including those in context, that involve length, weight/mass, and liquid volume using U.S. Customary and metric units. The student will:

| 4.MG.1a Determine an appropriate unit of measure to use when measuring liquid volume in both U.S. Customary (cup, pint, quart, gallon) and metric unit (milliliter, liter): |  |
| :---: | :---: |
| length in both U.S. Customary (inch, foot, yard, mile) and metric units (millimeter, centimeter, meter); | Bridges in Mathematics <br> Teachers Guide: <br> Unit 1: M4-S1, pp. 3-8 <br> Unit 2: M3-S4, pp. 17-21 <br> Unit 4: M3-S1, pp. 5-7; S2, pp. 9-15 <br> Unit 8: M1-S2, pp. 9-15; S3, pp. 17-21 <br> Number Corner <br> Teachers Guide: <br> September: pp. 16-21 <br> April: pp. 16-22 |
| weight/mass in both U.S. Customary (ounce, pound) and metric units (gram, kilogram); and | Bridges in Mathematics Teachers Guide: <br> Unit 1: M4-S2, pp. 9-13 <br> Unit 4: M3-S5, pp. 29-34 <br> Unit 8: M1-S2, pp. 9-15 |
| liquid volume in both U.S. Customary (cup, pint, quart, gallon) and metric units (milliliter, liter). | Bridges in Mathematics Teachers Guide: <br> Unit 1: M4-S3, pp. 15-20 <br> Unit 4: M3-S4, pp. 23-27 <br> Unit 8: M1-S2, pp. 9-15 <br> Number Corner <br> Teachers Guide: <br> November: pp. 14-22 |

4.MG.1 The student will reason mathematically to solve problems, including those in context, that involve length, weight/mass, and liquid volume using U.S. Customary and metric units. The student will:

## 4.MG.1.b Estimate and measure:

| length of an <br> object to the <br> nearest U.S. <br> Customary unit <br> $(1 / 2$ inch, $1 / 4$ <br> inch, $1 / 8$ inch, <br> foot, yard) and <br> nearest metric <br> unit (millimeter, <br> centimeter, <br> or meter); | Bridges in Mathematics <br> Teachers Guide: |
| :--- | :--- |
| Unit 4: M4-S1, pp. 3-7 |  |
| weight/mass <br> of an object to <br> the nearest U.S. <br> Customary unit <br> (ounce, pound) | Bridges in Mathematics <br> Teachers Guide: |
| Unit 1: M4-S2, pp. 9-14 <br> Unit 4: M3-S5, pp. 29-34 |  |

4.MG.1.b.ii
4.MG.1.b.iii and nearest metric unit (gram, kilogram); and

## liquid volume to

 the nearest U.S. Customary unit (cup, pint, quart, gallon) and nearest metric unit (milliliter, liter).
## Bridges in Mathematics

Teachers Guide:
Unit 1: M4-S3, pp. 15-20
Unit 4: M3-S4, pp. 23-27

## Compare estimates of length, weight/ mass, or liquid volume with the actual

 measurements.
## Bridges in Mathematics

Teachers Guide:
Unit 1: Unit 1: M4-S1, pp. 3-8; M4-S2, pp. 9-14; M4-S3, pp. 15-20
Unit 4: M3-S4, pp. 23-27, M3-S5, pp. 29-34
4.MG.1 The student will reason mathematically to solve problems, including those in context, that involve length, weight/mass, and liquid volume using U.S. Customary and metric units. The student will:
4.MG.1.d Given the equivalent measure of one unit, solve problems, including those in context, by determining the equivalent measures within the U.S. Customary system for:
4.MG.1.d.i
4.MG.1.d.ii

| length (inches <br> and feet, feet <br> and yards, inches <br> and yards); | Bridges in Mathematics <br> Teachers Guide: <br> Unit 1: M4-S1, pp. 3-8 <br> Unit 2: M3-S4, pp. 17-21 <br> Unit 4: M3-S1, pp. 5-7; S2, pp. 9-15 |
| :--- | :--- |
| weight/mass <br> (ounces and <br> pounds); and | Bridges in Mathematics <br> Teachers Guide: <br> Unit 1: M4-S2, pp. 9-13 <br> Unit 4: M3-S5, pp. 29-34 |
| liquid volume <br> (cups, pints, <br> quarts, and <br> gallons. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 1: M4-S3, pp. 15-20 <br> Unit 4: M3-S4, pp. 23-27 |
|  | Number Corner <br> Teachers Guide: <br> November: pp. 14-22 |

4.MG.2 The student will solve single-step and multistep contextual problems involving elapsed time (limited to hours and minutes within a 12-hour period). The student will:
4.MG.2.a Solve single-step and multistep contextual problems involving elapsed time in hours and minutes, within a 12-hour period (within a.m., within p.m., and across a.m. and p.m.) when given:
\(\left.$$
\begin{array}{|l|l}\hline \begin{array}{l}\text { the starting time } \\
\text { and the ending } \\
\text { time, determine } \\
\text { the amount of } \\
\text { time that has } \\
\text { elapsed in hours } \\
\text { and minutes; }\end{array} & \begin{array}{l}\text { Bridges in Mathematics } \\
\text { Teachers Guide: } \\
\text { Unit 4: M3-S3, pp. 17-22 } \\
\text { Unit 6: M3-S1, pp. 3-7 }\end{array}
$$ <br>
Number Corner <br>
Teachers Guide: <br>

November: pp. 8-12\end{array}\right]\)| Bridges in Mathematics |
| :--- |
| the starting time |
| and amount |
| of elapsed |
| time in hours |
| and minutes, |
| determine the |
| ending time; or |$\quad$| Teachers Guide: |
| :--- |
| Unit 4: M3-S3, pp. 17-22 |
| Unit 6: M3-S1, pp. 3-7 |
| Number Corner |
| Teachers Guide: |
| November: pp. 8-12 |

4.MG.3 The student will use multiple representations to develop and use formulas to solve problems, including those in context, involving area and perimeter limited to rectangles and squares (in both U.S. Customary and metric units). The student will:

| 4.MG.3.a | Use concrete <br> materials and <br> pictorial models <br> to develop a <br> formula for <br> the area and <br> perimeter of <br> a rectangle <br> (including <br> a square). | Bridges in Mathematics <br> Teachers Guide: <br> Unit 2: M1-S1, pp. 3-9; S3, pp. 15-20 <br> Unit 5: M3-S1, pp. 3-6; S2, pp. 7-10; S3, pp. 11-15; S4, pp. 17-20 |
| :--- | :--- | :--- |
|  | Determine <br> the area and <br> perimeter of <br> a rectangle <br> when given the <br> measure of two <br> adjacent sides (in <br> whole number <br> units), with and <br> without models. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 2: M1-S1, pp. 3-9; S3, pp. 15-20 |

[^0]4.MG.3 The student will use multiple representations to develop and use formulas to solve problems, including those in context, involving area and perimeter limited to rectangles and squares (in both U.S. Customary and metric units). The student will:

| 4.MG.3.d | Use concrete <br> materials and <br> pictorial models <br> to explore the | B |
| :--- | :--- | :--- |
| relationship |  |  |
| between area |  |  |
| and perimeter of |  |  |
| rectangles. |  |  |$\quad$ U

## Bridges in Mathematics <br> Teachers Guide:

Unit 5: M3-S1, pp. 3-6; S2, pp. 7-10; S3, pp. 11-15; S4, pp. 17-20
Unit 6: M2-S1, pp. 3-8; S2, pp. 9-13; M2-S3, pp. 15-20; S4, pp. 21-26

```
Identify and
represent
rectangles
with the same
perimeter and
```

different areas
or with the same
area and different
perimeters.

| Solve contextual <br> problems <br> involving area <br> and perimeter of <br> rectangles and <br> squares. | Bridges in Mathematics |
| :--- | :--- |
|  | Teachers Guide: |
|  | Unit 5: M3-S1, pp. 3-6; S2, pp. 7-10; S3, pp. 11-15; S4, pp. 17-20 |
|  | Number Corner <br> Teachers Guide: |
|  | April: pp. 7-13 |

4.MG.4 The student will identify, describe, and draw points, rays, line segments, angles, and lines, including intersecting, parallel, and perpendicular lines. The student will:

| 4.MG.4.a | Identify and describe points, lines, line segments, rays, and angles, including endpoints and vertices. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M1-S2, pp. 7-11; S3, pp. 13-17; S4, pp. 19-22; S5, pp. 23-28; S6, pp. 29-33 <br> Number Corner <br> Teachers Guide: <br> February: pp. 5-15 |
| :---: | :---: | :---: |
| 4.MG.4.b | Describe endpoints and vertices in relation to lines, line segments, rays, and angles. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M1-S2, pp. 7-11; S3, pp. 13-17; S4, pp. 19-22; S5, pp. 23-28; S6, pp. 29-33 <br> Number Corner <br> Teachers Guide: <br> February: pp. 5-15 |
| 4.MG.4.c | Draw <br> representations of points, line segments, rays, angles, and lines, using a ruler or straightedge. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M1-S2, pp. 7-11; S3, pp. 13-17; S4, pp. 19-22; S5, pp. 23-28; S6, pp. 29-33 <br> Number Corner <br> Teachers Guide: <br> February: pp. 5-15 |
| 4.MG.4.d | Identify parallel, perpendicular, and intersecting lines and line segments in plane and solid figures, including those in context. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M2-S1, pp. 3-7; S2, pp. 9-14; S4, pp. 21-24; S5, pp. 25-30; S6, pp. 31-33 <br> Number Corner <br> Teachers Guide: <br> December: pp. 40-43 |

> Use symbolic notation to name points, lines, line segments, rays, angles, and to describe parallel and perpendicular lines.

This standard is beyond the scope of the program.

## Standard

4.MG.5 The student will classify and describe quadrilaterals (parallelograms, rectangles, squares, rhombi, and/or trapezoids) using specific properties and attributes. The student will:

| 4.MG.5.a | Develop definitions for parallelograms, rectangles, squares, rhombi, and trapezoids through the exploration of properties and attributes. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M2-S4, pp. 21-24; S5, pp. 25-30; S6, pp. 31-33 <br> Number Corner <br> Teachers Guide: <br> February: pp. 14-16 |
| :---: | :---: | :---: |
| 4.MG.5.b | Identify and describe points, line segments, angles, and vertices in quadrilaterals. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M1-S5, pp. 23-28; M2-S4, pp. 21-24; S5, pp. 25-30; S6, pp. 31-33 <br> Number Corner <br> Teachers Guide: <br> February: pp. 5-15 |
| 4.MG.5.c | Identify and describe parallel, intersecting, perpendicular, and congruent sides in quadrilaterals. | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M1-S5, pp. 23-28; M2-S4, pp. 21-24; S5, pp. 25-30; S6, pp. 31-33 |

4.MG.5 The student will classify and describe quadrilaterals (parallelograms, rectangles, squares, rhombi, and/or trapezoids) using specific properties and attributes. The student will:

| 4.MG.5.d.i | 4.MG.5.d Compare, contrast, and classify quadrilaterals (parallelograms, rectangles, squares, rhombi, and/or trapezoids) based on the following <br> properties and attributes: |  |
| :--- | :--- | :--- |
|  | parallel sides; | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M1-S5, pp. 23-28; M2-S4, pp. 21-24; S5, pp. 25-30; S6, pp. 31-33 |
|  | perpendicular <br> sides; | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M1-S5, pp. 23-28; M2-S4, pp. 21-24; S5, pp. 25-30; S6, pp. 31-33 |
|  | congruence of <br> 4ides; and | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M1-S5, pp. 23-28; M2-S4, pp. 21-24; S5, pp. 25-30; S6, pp. 31-33 |
| 4.MG.5.d.iv | number of <br> right angles. | Bridges in Mathematics <br> Teachers Guide: |
|  | Unit 5: M1-S5, pp. 23-28; M2-S4, pp. 21-24; S5, pp. 25-30; S6, pp. 31-33 |  |
|  | Denote <br> properties of <br> quadrilaterals and <br> identify parallel <br> sides, congruent <br> sides, and right <br> angles by using <br> geometric <br> markings. | Bridges in Mathematics <br> 4eachers Guide: |
| Unit 5: M1-S5, pp. 23-28; M2-S4, pp. 21-24; S5, pp. 25-30; S6, pp. 31-33 |  |  | notation to name line segments and angles in quadrilaterals.

This standard is beyond the scope of the program.
4.MG.6 The student will identify, describe, compare, and contrast plane and solid figures according to their characteristics (number of angles, vertices, edges, and the number and shape of faces), with and without models. The student will:

| 4.MG.6.a | Identify <br> concrete models <br> and pictorial <br> representations <br> of solid figures <br> (cube, rectangular <br> prism, square <br> pyramid, sphere, <br> cone, and <br> cylinder). | Bridges in Mathematics <br> Teachers Guide: <br> Unit 5: M2-S4, pp. 21-24 <br> Number Corner <br> Teachers Guide: <br> February: pp. 14-16 |
| :--- | :--- | :--- |

## 4.MG.6.b

Identify and describe solid figures (cube, rectangular prism square pyramid and sphere) according to their characteristics (number of angles, vertices, edges, and by the number and shape of faces).

## Bridges in Mathematics

Teachers Guide:
Unit 5: M2-S4, pp. 21-24
Number Corner
Teachers Guide:
February: pp. 14-16

## Bridges in Mathematics

Teachers Guide:
Unit 5: M2-S4, pp. 21-24

## Number Corner

Teachers Guide:
February: pp. 14-16

## Probability \& Statistics

## Standard Descriptor Citations

4.PS. 1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on line graphs. The student will:

| 4.PS.1.a | Formulate <br> questions that <br> require the <br> collection or <br> acquisition <br> of data. | Note: These sessions do not have a focus on line graphs. <br> Bridges in Mathematics |
| :--- | :--- | :--- |
| Teachers Guide: |  |  |
| Unit 4: M4-S2, pp. 9-13 |  |  |
| Unit 6: M3-S1, pp. 3-7; S2, pp. 9-14 |  |  |
| Unit 8: M1-S1, pp. 3-8; S4, pp. 23-26; M2-S2, pp. 7-11; S3, pp. 13-16; S5, pp. 21-24 |  |  |


| Determine the | Note: These sessions do not have a focus on line graphs. |
| :---: | :---: |
| data needed | Bridges in Mathematics |
| formulated | Teachers Guide: |
| question and | Unit 4: M4-S2, pp. 9-13 |
| collect or acquire | Unit 6: M3-S1, pp. 3-7; S2, pp. 9-14 |
| existing data | Unit 8: M1-S1, pp. 3-8; S4, pp. 23-26; M2-S2, pp. 7-11; S3, pp. 13-16 |
| (limited to 10 or | Number Corner |
| fewer data points) | Teachers Guide: |
| using various methods (e.g., | April: pp. 35-40 |


| Organize and <br> represent a <br> data set using <br> line graphs <br> with a title and <br> labeled axes with <br> whole number <br> increments, with <br> and without | Note: These sessions do not have a focus on line graphs. <br> the use of |
| :--- | :--- |
| Unidges in Mathematics <br> Unit 6: M3-S2, pp. 9-13 <br> technology tools. |  |

4.PS. 1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on line graphs. The student will:
4.PS.1.d Analyze data represented in line graphs and communicate results orally and in writing:

|  | 4.PS.1.d Analyze data represented in line graphs and communicate results orally and in writing: |  |
| :---: | :---: | :---: |
| 4.PS.1.d.i | describe the characteristics of the data represented in a line graph and the data as a whole (e.g., the time period when the temperature increased the most); | Note: These sessions do not have a focus on line graphs. <br> Bridges in Mathematics <br> Teachers Guide: <br> Unit 4: M4-S2, pp. 9-13 <br> Unit 6: M3-S1, pp. 3-7; S2, pp. 9-14 <br> Unit 8: M1-S1, pp. 3-8; S4, pp. 23-26; M2-S2, pp. 7-11; S3, pp. 13-16 <br> Number Corner <br> Teachers Guide: <br> April: pp. 35-40 |
| 4.PS.1.d.ii | identify parts of the data that have special characteristics and explain the meaning of the greatest, the least, or the same (e.g., the highest temperature shows the warmest day); | Note: These sessions do not have a focus on line graphs. <br> Bridges in Mathematics <br> Teachers Guide: <br> Unit 4: M4-S2, pp. 9-13 <br> Unit 6: M3-S1, pp. 3-7; S2, pp. 9-14 <br> Unit 8: M1-S1, pp. 3-8; S4, pp. 23-26 <br> Number Corner <br> Teachers Guide: <br> April: pp. 35-40 |
| 4.PS.1.d.iii | make inferences about data represented in line graphs; | Note: These sessions do not have a focus on line graphs. <br> Bridges in Mathematics <br> Teachers Guide: <br> Unit 4: M4-S2, pp. 9-13 <br> Unit 6: M3-S1, pp. 3-7; S2, pp. 9-14 <br> Unit 8: M1-S1, pp. 3-8; S4, pp. 23-26 <br> Number Corner <br> Teachers Guide: <br> April: pp. 35-40 |

4.PS. 1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on line graphs. The student will:
4.PS.1.d Analyze data represented in line graphs and communicate results orally and in writing:

| draw conclusions <br> about the data <br> and make <br> predictions based <br> on the data <br> to answer <br> questions; and | Note: These sessions do not have a focus on line graphs. <br> Bridges in Mathematics <br> Teachers Guide: |
| :--- | :--- |
| Unit 4: M4-S2, pp. 9-13 <br> Unit 6: M3-S1, pp. 3-7; S2, pp. 9-14 <br> Unit 8: M1-S1, pp. 3-8; S4, pp. 23-26; M2-S2, pp. 7-11; S3, pp. 13-16 <br> Number Corner |  |
| Teachers Guide: |  |
| April: pp. 35-40 |  |

4.PS. 2 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on line graphs. The student will:

4.PS.2.a $\quad$| Describe |
| :--- |
| probability as |
| the degree of |
| likelihood of |
| an outcome |
| occurring using |
| terms such as |
| impossible, |
| unlikely, equally |
| likely, likely, |
| and certain. |$\quad$ This standard is beyond the scope of the program.

| Model and <br> determine <br> all possible <br> outcomes of a <br> given simple <br> event where <br> there are no more <br> than 24 possible <br> outcomes, using <br> a variety of <br> manipulatives <br> (e.g., coins, two- <br> sided counters, |  |
| :--- | :--- |
| number cubes, |  |
| spinners). |  |

```
Write the
probability of
a given simple
event as a
fraction between
0 and 1, where
there are no more
than 24 possible
outcomes.
```

This standard is beyond the scope of the program.
4.PS.2 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on line graphs. The student will:

| 4.PS.2.d | Determine the <br> likelihood of an <br> event occurring <br> and relate it to <br> its whole number <br> or fractional <br> representation <br> (e.g., impossible <br> or zero; equally <br> likely; certain <br> or one). | This standard is beyond the scope of the program. |
| :--- | :--- | :--- |
|  | Create a model <br> or contextual <br> problem to <br> represent a given <br> probability. | This standard is beyond the scope of the program. |

4 Patterns, Functions \& Algebra

## Standard Descriptor Citations

4.PFA. 1 The student will identify, describe, extend, and create increasing and decreasing patterns (limited to addition, subtraction, and multiplication of whole numbers), including those in context, using various representations. The student will:

| Identify, describe, | Bridges in Mathematics |
| :---: | :---: |
| extend, and | Teachers Guide: |
| create increasing | Unit 1: M2-S3, pp. 13-19 |
| and decreasing | Unit 2: M1-S1, pp. 3-9; M2-S5, pp. 29-35 |
| patterns | Unit 8: M1-S3, pp. 19-21 |
| representations | Number Corner |
| (e.g., objects, | Teachers Guide: |
| pictures, | January: pp. 7-13 |
| numbers, number | March: pp. 7-14 |
| lines, input/ | May: pp. 6-14 |


4.PFA. 1 The student will identify, describe, extend, and create increasing and decreasing patterns (limited to addition, subtraction, and multiplication of whole numbers), including those in context, using various representations. The student will:

## 4.PFA.1.c

4.PFA.1.d

| Given a rule, <br> create increasing <br> and decreasing <br> patterns using <br> numbers and <br> input/output | Note: The curriculum does not use input/output language. |
| :--- | :--- |
| tables (including | Teachers Guide: |
| Unit 1: M2-S3, pp. 13-19 <br> function <br> machines). | Unit 2: M2-S5, pp. 29-35 |
|  | Unit 8: M1-S3, pp. 19-21 <br> Teamber Corner <br> Teachers Guide: <br> January: pp. 7-13 <br> March: pp. 7-14 |


| Analyze an <br> increasing or <br> decreasing <br> single-operation <br> numerical pattern | Note: The curriculum does not use input/output language. | | |
|---|---|---|---|
| found in lists, | Teachers Guide: |
| Unit 1: M2-S3, pp. 13-19 |  |
| input/output |  |
| tables, or function |  |
| machines and |  |$\quad$ Unit 2: M2-S5, pp. 29-35 | Number Corner |
| :--- |
| generalize the |
| change to identify |
| the rule, extend |
| the pattern, |$\quad$| Teachers Guide: |
| :--- |
| or identify <br> missing terms. |

increasing or
decreasing
single-operation
merical pattern
found in lists,
input/output
mbles, or function
machines and
generalize the
end
the pattern,
missing terms


[^0]:    Determine the area and perimeter of a square when given the measure of one side (in whole number units), with and without models.

