

Mathematics Standards of Learning for Virginia Public Schools

5.NS. 1 The student will use reasoning and justification to identify and represent equivalency between fractions (with denominators that are thirds, eighths, and factors of 100) and decimals; and compare and order sets of fractions (proper, improper, and/or mixed numbers having denominators of 12 or less) and decimals (through thousandths). The student will:

5.NS.1.a	Use concrete and pictorial models to represent fractions with denominators that are thirds, eighths, and factors of 100 in their equivalent decimal form.*	Bridges in Mathematics Teachers Guide: Unit 2: M1-S1, pp. 4-6; S3, pp. 17-19; S5, p. 29 Unit 3: M2-S1, pp. 8-11; S5, pp. 28-32; S6, pp. 36-38; S7, pp. 42-45 Number Corner Teachers Guide: September: pp. 6-12 October: pp. 42-44
5.NS.1.b	Use concrete and pictorial models to represent decimals in their equivalent fraction form (thirds, eighths, and factors of 100).*	Bridges in Mathematics Teachers Guide: Unit 2: M1-S1, pp. 4-6; S3, pp. 17-19; S5, p. 29 Unit 3: M2-S1, pp. 8-11; S5, pp. 28-32; S6, pp. 36-38; S7, pp. 42-45 Number Corner Teachers Guide: September: pp. 6-12 October: pp. 42-44
5.NS.1.c	Identify equivalent relationships between decimals and fractions with denominators that are thirds, eighths, and factors of 100 in their equivalent decimal form, with and without models.*	Bridges in Mathematics Teachers Guide: Unit 2: M1-S1, pp. 4-6; S3, pp. 17-19; S5, p. 29 Unit 3: M2-S1, pp. 8-11; S5, pp. 28-32; S6, pp. 36-38; S7, pp. 42-45 Number Corner Teachers Guide: September: pp. 6-12 October: pp. 42-44

5.NS. 1 The student will use reasoning and justification to identify and represent equivalency between fractions (with denominators that are thirds, eighths, and factors of 100) and decimals; and compare and order sets of fractions (proper, improper, and/or mixed numbers having denominators of 12 or less) and decimals (through thousandths). The student will:

Compare (using symbols $<,>$, $=$) and order	Number Corner (least to greatest and greatest to
Teachers Guide:	
least) a set of no	April: p. 21
more than four	
decimals and	
fractions (proper,	
improper) and/or	
mixed numbers	
using multiple	
strategies (e.g.,	
benchmarks,	
place value,	
number lines).	
Justify solutions	
orally, in writing,	
or with a model.*	

* On the state assessment, items measuring this objective are assessed without the use of a calculator.
5.NS. 2 The student will demonstrate an understanding of prime and composite numbers, and determine the prime factorization of a whole number up to 100. The student will:

5.NS.2.a

5.NS.2.b
5.NS.2.c
Given a whole
number up to
100, create
a concrete
or pictorial
representation
to demonstrate
whether the
number is prime
or composite, and
justify reasoning. justify reasoning.

Classify, compare,

and contrast whole numbers up to 100 using the characteristics prime and composite.

Bridges in Mathematics
Teachers Guide:
Unit 1: M2-S6, pp. 40-41

Bridges in Mathematics

Teachers Guide:
Unit 1: M2-S6, pp. 40-41
Number Corner
Teachers Guide:
September: pp. 32-37

5 Computation \& Estimation

Standard Descriptor Citations

5.CE. 1 The student will estimate, represent, solve, and justify solutions to single-step and multistep contextual problems using addition, subtraction, multiplication, and division with whole numbers. The student will:

Standard

5.CE.1 The student will estimate, represent, solve, and justify solutions to single-step and multistep contextual problems using addition, subtraction, multiplication, and division with whole numbers. The student will:

Interpret the	Bridges in Mathematics
quotient and	Teachers Guide:
remainder	
when solving	Unit 1: M4-S2, pp. 13-18
a contextual problem.	Unit 7: M2-S5, p. 29; S6, pp. 32-35

5.CE. 2 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition and subtraction of fractions with like and unlike denominators (with and without models), and solve single-step contextual problems involving multiplication of a whole number and a proper fraction, with models. The student will:

> Determine the least common multiple of two numbers to find the least common denominator for two fractions.

```
Bridges in Mathematics
Teachers Guide:
Unit 2: M3-S5, pp. 24-27; M4-S1, pp. 4-8; S2, pp. 9-12; S3, pp. 16-18
Unit 4: M2-S1, pp. 6-7
```


Number Corner

Teachers Guide:
March: pp. 33-36
April: pp. 24-25
Estimate and
determine
the sum or
difference of two
fractions (proper
or improper)
and/or mixed
numbers, having
like and unlike
denominators
limited to $2,3,4$,
$5,6,8,10$, and
$12(e .9 ., 5 / 8+$
$1 / 4,4 / 5-2 / 3$
, $33 / 4+25 / 12$),
and simplify
the resulting
fraction.*

Bridges in Mathematics
Teachers Guide:
Unit 2: M1-S3, pp. 17-19; S5, pp. 28-29; M2-S2, pp. 12-17; S3, pp. 20-24; S6, pp. 38-39; M3-S2, pp. 8-12; S3, p. 16

Number Corner

Teachers Guide:
December: pp. 22-24
fraction.*
5.CE.2 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition and subtraction of fractions with like and unlike denominators (with and without models), and solve single-step contextual problems involving multiplication of a whole number and a proper fraction, with models. The student will:

5.CE.2.c	Estimate and solve single-step and multistep contextual problems involving addition and subtraction with fractions (proper or improper) and/or mixed numbers having like and unlike denominators, with and without models. Denominators should be limited to $2,3,4,5,6$, 8,10 , and 12. Answers should be expressed in simplest form.	Bridges in Mathematics Teachers Guide: Unit 2: M1-S5, pp. 28-29; M2-S2, pp. 12-17; S3, pp. 20-24; S4, pp. 26-28; S6, pp. 38-39 Number Corner Teachers Guide: April: pp. 24-25
5.CE.2.d	Solve singlestep contextual problems involving multiplication of a whole number, limited to 12 or less, and a proper fraction (e.g., 9 $\times 2 / 3,8 \times 3 / 4$), with models. The denominator will be a factor of the whole number and answers should be expressed in simplest form.*	Bridges in Mathematics Teachers Guide: Unit 2: M2-S1, pp. 5-8; S2, pp. 12-17 Unit 4: M2-S1, pp. 6-7; S2, pp. 12-13; S3, pp. 18-19 Unit 5: M1-S3, pp. 14-17; S4, pp. 20-24; S5, pp. 26-27

[^0]5.CE.3 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition, subtraction, multiplication, and division with decimal numbers. The student will:

```
Apply estimation
strategies (e.g.,
rounding to the
nearest whole
number, tenth
or hundredth;
compatible
numbers,
place value)
to determine
a reasonable
solution for single-
step and multistep
contextual
problems
involving addition,
subtraction, and
multiplication
of decimals,
and single-step
contextual
problems
involving division
of decimals.
```

5.CE.3 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition, subtraction, multiplication, and division with decimal numbers. The student will:
5.CE.3.b Estimate and determine the product of two numbers using strategies and algorithms, including the standard algorithm, when given:

a two-digit factor

 and a one-digit factor (e.g., $2.3 \times$ 4; $0.08 \times 0.9 ; .16$ $\times 5$); ${ }^{*}$ (Products will not exceed the thousandths place, and eading zeroes will not be considered when counting digits.)
a three-digit

 factor and a onedigit factor (e.g. $0.156 \times 4,3.28$ $\times 7,8.09 \times 0.2)$;* and (Products will not exceed the thousandths place, and leading zeroes will not be considered when counting digits.)a two-digit factor and a two-digit factor (e.g., $0.85 \times 3.7,14 \times$ $1.6,9.2 \times 3.5)$.* (Products will not exceed the thousandths place, and eading zeroes will not be considered when counting digits.)

```
Bridges in Mathematics
Teachers Guide:
Unit 3: M1-S3, pp. 17-19
Unit 4: M1-S4, pp. 24-27; M2-S1, pp. 6-7; S2, pp. 12-13; S3, pp. 18-19; M2-S3, pp. 18-19; S4, pp. 26-28
Unit 7: M3-S4, pp. 16-20
```

Bridges in Mathematics
Teachers Guide:
Unit 4: M1-S4, pp. 24-27; M2-S3, pp. 20-22

Number Corner

Teachers Guide:
January: pp. 33-37, 39-46

Bridges in Mathematics

Teachers Guide:
Unit 4: M1-S4, pp. 24-27; M2-S1, pp. 6-7; S2, pp. 12-13; M2-S4, pp. 26-28
Unit 7: M4-S1, pp. 4-8
5.CE.3 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition, subtraction, multiplication, and division with decimal numbers. The student will:
5.CE.3.c Estimate and determine the quotient of two numbers using strategies and algorithms, including the standard algorithm, in which:*

	quotients do not exceed four digits with or without a decimal point;	Bridges in Mathematics Teachers Guide: Unit 7: M4-S2, pp. 10-14; S3, pp. 16-19 Number Corner
5.CE.3.c.ii	Teachers Guide: December: pp. 32-34 January: pp. 41-46	
	quotients may include whole numbers, tenths, hundredths, or thousandths;	Bridges in Mathematics Teachers Guide: Unit 7: M4-S2, pp. 10-14; S3, pp. 16-19 Number Corner
5.CE.3.c.iii	Teachers Guide: December: pp. 32-34 January: pp. 41-46	
	divisors are limited to a single digit whole number or a decimal expressed as tenths; and	Bridges in Mathematics Teachers Guide: Unit 7: M4-S2, pp. 10-14; S3, pp. 16-19 Number Corner
Teachers Guide:		
December: pp. 32-34		
January: pp. 41-46		

5.CE.3 The student will estimate, represent, solve, and justify solutions to single-step and multistep problems, including those in context, using addition, subtraction, multiplication, and division with decimal numbers. The student will:

```
Solve single-step Bridges in Mathematics
and multistep Teachers Guide:
contextual
problems
involving addition,
subtraction, and
multiplication
of decimals
by applying
strategies (e.g.,
estimation,
modeling) and
algorithms,
including
the standard
algorithm.
```

Solve single- step contextual	Bridges in Mathematics		
problems			
involving division	Unit 7: M4-S2, pp. 10-14; S3, pp. 16-19		
with decimals			
by applying			
strategies (e.g.,	Number Corner		
estimation,	Teachers Guide:		
December: pp. 32-34			
modeling) and			
algorithms,			
including			
the standard			
algorithm.		\quad	January: pp. 41-46
:---	\quad		
:---			

* On the state assessment, items measuring this objective are assessed without the use of a calculator.
5.CE.4 The student will simplify numerical expressions with whole numbers using the order of operations. The student will:

	5.CE.4.a Use order of operations to simplify numerical expressions with whole numbers, limited to addition, subtraction, multiplication, and division in which:*	
5.CE.4.a.i	expressions may contain no more than one set of parentheses;	Number Corner Teachers Guide: October: pp. 23-30 November: pp. 22-24
5.CE.4.a.ii	simplification will be limited to five whole numbers and four operations in any combination of addition, subtraction, multiplication, or division;	Number Corner Teachers Guide: October: pp. 23-30 November: pp. 22-24
5.CE.4.a.iii	whole numbers will be limited to two digits or less; and	Number Corner Teachers Guide: October: pp. 23-30 November: pp. 22-24
5.CE.4.a.iv	expressions should not include braces, brackets, or fraction bars.	Number Corner Teachers Guide: October: pp. 23-30 November: pp. 22-24
5.CE.4.b	Given a whole number numerical expression involving more than one operation, describe which operation is completed first, which is second, and which is third.*	Number Corner Teachers Guide: October: pp. 23-30 November: pp. 22-24

* On the state assessment, items measuring this objective are assessed without the use of a calculator.
(5) Measurement \& Geometry

Standard Descriptor Citations

5.MG. 1 The student will reason mathematically to solve problems, including those in context, that involve length, mass, and liquid volume using metric units. The student will:

	5.MG.1.a Determine the most appropriate unit of measure to use in a contextual problem that involves metric units:	
	length (millimeters, centimeters, meters, and kilometers);	This standard is beyond the scope of the program.
	mass (grams and 5.MG.1.a.ii kilograms); and	This standard is beyond the scope of the program.
5.MG.1.a.iii	liquid volume (milliliters and liters).	This standard is beyond the scope of the program.

5.MG.1.b.i
5.MG.1.b.ii

5.MG.1.b.ii

5.MG.1.b.iii
5.MG.1.b Estimate and measure to solve contextual problems that involve metric units:

length

(millimeters, centimeters and meters);

mass (grams and Number Corner

kilograms); and
liquid volume (milliliters and liters).

This standard is beyond the scope of this program.

Teachers Guide:
October: pp. 16-18
Number Corner
Teachers Guide:
February: pp. 16-17

Standard

5.MG. 1 The student will reason mathematically to solve problems, including those in context, that involve length, mass, and liquid volume using metric units. The student will:
5.MG.1.c Given the equivalent metric measure of one unit, in a contextual problem, determine the equivalent measurement within the metric system:

length (millimeters, centimeters, meters, and kilometers);	Bridges in Mathematics Teachers Guide: Unit 3: M2-S7, p. 44; M3-S3, pp. 16-18 Number Corner			
Teachers Guide:				
November: pp. 15, 16-18		$	$	mass (grams and
:---				
kilograms); and	\quad This standard is beyond the scope of this program.			

5.MG.2 The student will use multiple representations to solve problems, including those in context, involving perimeter, area, and volume. The student will:

5.MG.2.a	Investigate and develop a formula for determining the area of a right triangle.	This standard is beyond the scope of the program.

5.MG.2.b
5.MG.2.c

$$
\begin{aligned}
& \text { Estimate and } \\
& \text { determine the } \\
& \text { area of a right } \\
& \text { triangle, with } \\
& \text { diagrams, when } \\
& \text { the base and the } \\
& \text { height are given } \\
& \text { in whole number } \\
& \text { units, in metric or } \\
& \text { U.S. Customary } \\
& \text { units, and record } \\
& \text { the solution with } \\
& \text { the appropriate } \\
& \text { unit of measure } \\
& \text { (e.g., } 16 \text { square } \\
& \text { inches). }
\end{aligned}
$$

```
Describe volume
as a measure
of capacity and
give examples
of volume as a
measurement
in contextual
situations.
```

5.MG.2 The student will use multiple representations to solve problems, including those in context, involving perimeter, area, and volume. The student will:

5.MG.2.e	Solve problems, including those in context, to estimate and determine the volume of a rectangular prism using concrete objects, diagrams, and formulas when the length, width, and height are given in whole number units. Record the solution with the appropriate unit of measure (e.g., 12 cubic inches).	Bridges in Mathematics Teachers Guide: Unit 6: M3-S1, pp. 4-6; S2, pp. 8-13; S3, pp. 16-17; S4, pp. 22-26; S5, pp. 28-30 Number Corner Teachers Guide: October: pp. 11-13 January: pp. 34-38
5.MG.2.f	Identify whether the application of the concept of perimeter, area, or volume is appropriate for a given situation.	This standard is beyond the scope of the program.
5.MG.2.g	Solve contextual problems that involve perimeter, area, and volume in standard units of measure.	Bridges in Mathematics Teachers Guide: Unit 1: M1-S5, pp.30-33; M2-S3, pp. 19-23; S4, pp. 26-28; M4-S1, pp. 4-10 Unit 6: S3, pp. 16-19; S4, pp. 22-26; S5, pp. 28-30 Number Corner Teachers Guide: March: p. 8

5.MG.3 The student will classify and measure angles and triangles, and solve problems, including those in context. The student will:

5.MG.3.a	Classify angles as right, acute, obtuse, or straight and justify reasoning.	Bridges in Mathematics Teachers Guide: Unit 6: M2-S1, pp. 4-8 Number Corner Teachers Guide: November: pp. 8-11
5.MG.3.b	Classify triangles as right, acute, or obtuse and equilateral, scalene, or isosceles and justify reasoning.	Bridges in Mathematics Teachers Guide: Unit 6: M2-S1, pp. 4-8; S2, pp. 10-11; S4, pp. 22-23 Number Corner Teachers Guide: November: pp. 6, 8-11
5.MG.3.c	Identify congruent sides and right angles using geometric markings to denote properties of triangles.	This standard is beyond the scope of the program.
5.MG.3.d	Compare and contrast the properties of triangles.	Bridges in Mathematics Teachers Guide: Unit 6: M2-S1, pp. 4-8 Number Corner Teachers Guide: November: pp. 8-11
5.MG.3.e	Identify the appropriate tools (e.g., protractor, straightedge, angle ruler, available technology) to measure and draw angles.	This standard is beyond the scope of the program.

5.MG.3 The student will classify and measure angles and triangles, and solve problems, including those in context. The student will:

	Measure right, acute, obtuse, and straight angles, using appropriate tools, and identify measures in degrees.	This standard is beyond the scope of the program.

5.MG.3.g	Use models to prove that the sum of the interior angles of a triangle is 180 degrees and use the relationship to determine an unknown angle measure in a triangl

This standard is beyond the scope of the program.
triangle.

```
Solve addition
and subtraction
contextual
problems to
determine
unknown angle
measures on
a diagram.
```


5 Probability \& Statistics

Standard Descriptor Citations

5.PS. 1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on line plots (dot plots) and stem-and-leaf plots. The student will:

5.PS.1.a	Formulate questions that require the collection or acquisition of data.	Note: These sessions do not have a focus on line plots or stem-and-leaf plots. Number Corner Teachers Guide: October: pp. 18-21 December: pp. 14-20
5.PS.1.b	Determine the data needed to answer a formulated question and collect or acquire existing data (limited to 30 or fewer data points) using various methods (e.g., polls, observations, measurements, experiments).	Note: These sessions do not have a focus on line plots or stem-and-leaf plots. Number Corner Teachers Guide: October: pp. 18-21 December: pp. 14-20
5.PS.1.c	Organize and represent a data set using a line plot (dot plot) with a title, labeled axes, and a key, with and without the use of technology tools. Lines plots (dot plots) may contain whole numbers, fractions, or decimals.	Note: These sessions have students organizing and representing data on graphs that are not specifically line plots. Bridges in Mathematics Teachers Guide: Unit 6: M1-S6, pp. 36-40 Number Corner Teachers Guide: March: pp. 18-20 October: pp. 18-21

Standard

5.PS. 1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on line plots (dot plots) and stem-and-leaf plots. The student will:

```
Organize and
represent
numerical data
using a stem-
and-leaf plot
with a title and
key, where the
stems are listed in
ascending order
and the leaves
are in ascending
order, with or
without commas
between
the leaves.
```

5.PS.1.d
5.PS. 1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on line plots (dot plots) and stem-and-leaf plots. The student will:
5.PS.1.e Analyze data represented in line plots (dot plots) and stem-and-leaf plots and communicate results orally and in writing:

describe the

 characteristics of the data represented in a line plot (dot plot) and stem-and-leaf plot as a whole (e.g., the shape and spread of the data);make inferences about data represented in line plots (dot plots) and stem-and-leaf plots (e.g., based on a line plot (dot plot) of the number of books students in a bus line have in their backpack, every student will have from two to four books in their backpack);
identify parts of the data that have special characteristics and explain the meaning of the greatest, the least, or the same (e.g., the stem-and-leaf plot shows that the same number of students scored in the 90s as scored in the 70s);

Note: Students do not work with stem-and-leaf plots.

Bridges in Mathematics

Teachers Guide:
M1-S6, pp. 36-40

Number Corner

Teachers Guide:
March: pp. 18-20
October: pp. 18-21
Note: Students do not work with stem-and-leaf plots.

Bridges in Mathematics

Teachers Guide:
M1-S6, pp. 36-40
Number Corner
Teachers Guide:
March: pp. 18-20
October: pp. 18-21

Note: Students do not work with stem-and-leaf plots.

Bridges in Mathematics

Teachers Guide:
M1-S6, pp. 36-40

Number Corner

Teachers Guide:
March: pp. 18-20
October: pp. 18-21
5.PS. 1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on line plots (dot plots) and stem-and-leaf plots. The student will:
5.PS.1.e Analyze data represented in line plots (dot plots) and stem-and-leaf plots and communicate results orally and in writing:
$\left.\begin{array}{l|l|l} & \begin{array}{l}\text { draw conclusions } \\ \text { about the data } \\ \text { and make } \\ \text { predictions } \\ \text { based on the } \\ \text { data to answer } \\ \text { questions; and }\end{array} & \begin{array}{l}\text { Note: Students do not work with stem-and-leaf plots. } \\ \text { Bridges in Mathematics } \\ \text { Teachers Guide: } \\ \text { M1-S6, pp. 36-40 } \\ \text { Number Corner }\end{array} \\ \text { Teachers Guide: } \\ \text { March: pp. 18-20 } \\ \text { October: pp. 18-21 }\end{array}\right]$

Standard
5.PS. 2 The student will solve contextual problems using measures of center and the range. The student will:

5.PS.2.a	Describe mean as fair share.	Bridges in Mathematics Teachers Guide: Unit 8: M1-S5, pp. 24-26
	Describe and determine the mean of a set of data values representing data from a given context as a measure of center.	Bridges in Mathematics Teachers Guide: Unit 8: M1-S5, pp. 24-26

Describe and determine the median of a set of data values representing data from a given context as a measure of center.

Describe and determine the mode of a set of data values representing data from a given context as a measure of center.

This standard is beyond the scope of the program.

This standard is beyond the scope of the program.

This standard is beyond the scope of the program.
5.PS.3 The student will determine the probability of an outcome by constructing a model of a sample space and using the Fundamental (Basic) Counting Principle. The student will:

5.PS.3.a $\left\lvert\,$| Determine the |
| :--- |
| probability of |
| an outcome by |
| constructing a |
| sample space |
| (with a total of 24 |
| or fewer equally |
| likely possible |
| outcomes), using |
| a tree diagram, |
| list, or chart |
| to represent |
| and determine |
| all possible |
| outcomes. |$\quad\right.$ This standard is beyond the scope of the program. $\quad . \quad$.

```
Determine
the number
of possible
outcomes
by using the
Fundamental
(Basic) Counting
Principle.
```

5.PFA. 1 The student will identify, describe, extend, and create increasing and decreasing patterns with whole numbers, fractions, and decimals, including those in context, using various representations. The student will:

Identify, describe, extend, and	Bridges in Mathematics
create increasing	Teachers Guide:
and decreasing	Unit 6: M1-S3, pp. 19-20; S4, pp. 22-25; S5, pp. 27-33; S6, pp. 35-40
patterns	Number Corner
using various	Teachers Guide:
representations	December: pp. 9-14
(e.g., objects,	January: pp. 5-11
pictures, numbers, number lines, input/output	March: p. 9-11
tables, function	
machines). pp. 6-12	

5.PFA. 1 The student will identify, describe, extend, and create increasing and decreasing patterns with whole numbers, fractions, and decimals, including those in context, using various representations. The student will:

Analyze an increasing or decreasing single-operation numerical pattern found in lists, input/output tables, and function machines, and generalize the change to identify the rule, extend the pattern, or identify missing terms. (Patterns will be limited to addition, subtraction, multiplication, and division of whole numbers; addition and subtraction of fractions with like denominators of 12 or less; and addition and subtraction of decimals expressed in tenths or hundredths).	Bridges in Mathematics Teachers Guide: Unit 6: M1-S3, pp. 14-16; S4, pp. 21-25; S5, pp. 27-33; S6, pp. 35-40 Number Corner Teachers Guide: January: pp. 10-11

5.PFA. 1 The student will identify, describe, extend, and create increasing and decreasing patterns with whole numbers, fractions, and decimals, including those in context, using various representations. The student will:

Solve contextual problems that involve identifying, describing, and extending increasing and decreasing patterns using single-operation input and output rules (limited to addition, subtraction, multiplication, and division of whole numbers; addition and subtraction of fractions with like denominators of 12 or less; and addition and subtraction of decimals expressed in tenths or hundredths).	Bridges in Mathematics Teachers Guide: Unit 6: M1-S3, pp. 14-16; S6, pp. 35-40 Number Corner Teachers Guide: March: p. 20

[^0]: * On the state assessment, items measuring this objective are assessed without the use of a calculator.

