Texas Essential Knowledge & Skills (TEKS)
Bridges in Mathematics & Number Corner 2nd Edition

The following citations are representative, not comprehensive.

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.A) apply mathematics to problems arising in everyday life, society, and the workplace</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (1.A.i) apply mathematics to problems arising in everyday life | Unit 1 Module 1 Session 1
Unit 1 Module 1 Session 5
Unit 2 Module 1 Session 2
Unit 2 Module 2 Session 3
Unit 2 Module 3 Session 3
Unit 2 Module 3 Session 4
Unit 2 Module 4 Session 3 | September: Number Line
December: Calendar Grid
February: Calendar Collector |
| (1.A.ii) apply mathematics to problems arising in society | Unit 2 Module 3 Session 4
Unit 2 Module 4 Session 3
Unit 4 Module 2 Session 1
Unit 4 Module 2 Session 2
Unit 4 Module 3 Session 3
Unit 4 Module 3 Session 3
Unit 5 Module 2 Session 2 | September: Number Line
December: Calendar Grid
February: Calendar Collector |
| (1.A.iii) apply mathematics to problems arising in the workplace | Unit 4 Module 2 Session 2
Unit 4 Module 2 Session 3
Unit 4 Module 3 Session 3
Unit 5 Module 2 Session 2
Unit 7 Module 7 Session 4
Unit 7 Module 7 Session 5
Unit 7 Module 4 Session 1 | September: Number Line
December: Calendar Grid
February: Calendar Collector |
| **(1.B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution** |
| (1.B.i) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process | Unit 1 Module 1 Session 3
Unit 2 Module 3 Session 5
Unit 2 Module 4 Session 1 | January: Calendar Grid
March: Computational Fluency
April: Calendar Collector |
| (1.B.ii) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the reasonableness of the solution | Unit 3 Module 1 Session 5
Unit 2 Module 3 Session 5
Unit 6 Module 2 Session 5 | January: Calendar Grid
March: Computational Fluency
April: Calendar Collector |
| **(1.C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems** |
| (1.C.i) select tools, including **real objects** as appropriate, to solve problems | Unit 2 Module 3 Session 1
Unit 3 Module 1 Session 1 | September: Calendar Collector
April: Calendar Collector
May: Calendar Collector |
| (1.C.ii) select tools, including **manipulatives** as appropriate, to solve problems | Unit 1 Module 1 Session 3
Unit 2 Module 3 Session 5
Unit 2 Module 3 Session 1 | September: Calendar Collector
April: Calendar Collector
November: Calendar Grid |
| (1.C.iii) select tools, including **paper and pencil** as appropriate, to solve problems | Unit 1 Module 1 Session 3
Unit 2 Module 3 Session 5
Unit 2 Module 3 Session 1 | September: Calendar Collector
April: Calendar Collector
November: Calendar Grid |
| (1.C.iv) select tools, including **technology** as appropriate, to solve problems | Unit 1 Module 2 Sessions 1, 2, 3, 5
Unit 1 Module 3 Session 1
Unit 1 Module 4 Session 1
The Number Rack manipulative is available in digital form as a free app on the Bridges Educator site. | |

© The Math Learning Center | www.mathlearningcenter.org
Texas Essential Knowledge & Skills (TEKS)
Bridges in Mathematics & Number Corner 2nd Edition

continued

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
</table>
| (1.C.v) select techniques, including mental math as appropriate, to solve problems | Unit 2 Module 3 Session 1
Unit 3 Module 3 Session 3
Unit 3 Module 3 Session 4 | September: Calendar Collector
April: Calendar Collector
May: Calendar Collector |
| (1.C.vi) select techniques, including estimation as appropriate, to solve problems | Unit 3 Module 3 Session 3
Unit 3 Module 3 Session 4
Unit 2 Module 3 Session 1 | September: Calendar Collector
April: Calendar Collector
May: Calendar Collector |
| (1.C.vii) select techniques, including number sense as appropriate, to solve problems | Unit 3 Module 3 Session 4
Unit 2 Module 3 Session 1
Unit 1 Module 1 Session 5 | September: Calendar Collector
April: Calendar Collector
November: Calendar Grid |
| *(1.D)* communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate | **(1.D.i)** communicate mathematical ideas using multiple representations, including symbols as appropriate | Unit 3 Module 2 Session 4
Unit 3 Module 2 Session 5
Unit 3 Module 3 Session 1 | September: Calendar Grid
November: Calendar Grid
January: Calendar Collector |
| | **(1.D.ii)** communicate mathematical ideas using multiple representations, including diagrams as appropriate | Unit 3 Module 2 Session 4
Unit 6 Module 3 Session 3
Unit 6 Module 3 Session 4 | September: Calendar Grid
November: Calendar Grid
January: Calendar Collector |
| | **(1.D.iii)** communicate mathematical ideas using multiple representations, including graphs as appropriate | Unit 3 Module 2 Session 5
Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 2 | January: Calendar Collector
February: Calendar Grid |
| | **(1.D.iv)** communicate mathematical ideas using multiple representations, including language as appropriate | Unit 3 Module 2 Session 4
Unit 3 Module 2 Session 5
Unit 3 Module 3 Session 1 | September: Calendar Grid
November: Calendar Grid
January: Calendar Collector |
| | **(1.D.v)** communicate mathematical reasoning using multiple representations, including symbols as appropriate | Unit 3 Module 2 Session 4
Unit 3 Module 2 Session 5
Unit 3 Module 3 Session 1 | September: Calendar Grid
November: Calendar Grid
January: Calendar Collector |
| | **(1.D.vi)** communicate mathematical reasoning using multiple representations, including diagrams as appropriate | Unit 3 Module 2 Session 4
Unit 6 Module 3 Session 3
Unit 6 Module 3 Session 4 | September: Calendar Grid
November: Calendar Grid
January: Calendar Collector |
| | **(1.D.vii)** communicate mathematical reasoning using multiple representations, including graphs as appropriate | Unit 3 Module 2 Session 5
Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 2 | January: Calendar Collector
February: Calendar Grid |
| | **(1.D.viii)** communicate mathematical reasoning using multiple representations, including language as appropriate | Unit 3 Module 2 Session 4
Unit 3 Module 2 Session 5
Unit 3 Module 3 Session 1 | September: Calendar Grid
November: Calendar Grid
January: Calendar Collector |
| | **(1.D.ix)** communicate [mathematical ideas’] implications using multiple representations, including symbols as appropriate | Unit 3 Module 2 Session 4
Unit 3 Module 3 Session 1
Unit 6 Module 3 Session 3 | September: Calendar Grid
November: Calendar Grid
January: Calendar Collector |
| | **(1.D.x)** communicate [mathematical ideas’] implications using multiple representations, including diagrams as appropriate | Unit 3 Module 2 Session 4
Unit 6 Module 3 Session 3
Unit 6 Module 3 Session 4 | September: Calendar Grid
November: Calendar Grid
January: Calendar Collector |
| | **(1.D.xi)** communicate [mathematical ideas’] implications using multiple representations, including graphs as appropriate | Unit 3 Module 2 Session 5
Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 2 | January: Calendar Collector
February: Calendar Grid |
| | **(1.D.xii)** communicate [mathematical reasoning’] implications using multiple representations, including symbols as appropriate | Unit 3 Module 2 Session 4
Unit 6 Module 3 Session 3
Unit 3 Module 3 Session 1 | September: Calendar Grid
November: Calendar Grid
January: Calendar Collector |
<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.D.xiv) communicate [mathematical reasoning's] implications using multiple representations, including diagrams as appropriate</td>
<td>Unit 3 Module 2 Session 4
Unit 6 Module 3 Session 3
Unit 6 Module 3 Session 4</td>
<td>September: Calendar Grid
November: Calendar Grid
January: Calendar Collector</td>
</tr>
<tr>
<td>(1.D.xv) communicate [mathematical reasoning's] implications using multiple representations, including graphs as appropriate</td>
<td>Unit 3 Module 2 Session 5
Unit 3 Module 3 Session 2
Unit 3 module 3 Session 1</td>
<td>January: Calendar Collector
February: Calendar Grid</td>
</tr>
<tr>
<td>(1.D.xvi) communicate [mathematical reasoning's] implications using multiple representations, including language as appropriate</td>
<td>Unit 3 Module 2 Session 4
Unit 3 module 3 Session 2
Unit 3 Module 3 Session 1</td>
<td>September: Calendar Grid
November: Calendar Grid
January: Calendar Collector</td>
</tr>
<tr>
<td>(1.E) create and use representations to organize, record, and communicate mathematical ideas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.E.i) create representations to organize mathematical ideas</td>
<td>Unit 6 Module 1 Session 4
Unit 6 Module 2 Session 4
Unit 6 Module 4 Session 1</td>
<td>September: Calendar Grid
September: Days in School
October: Calendar Collector</td>
</tr>
<tr>
<td>(1.E.ii) use representations to organize mathematical ideas</td>
<td>Unit 6 Module 1 Session 4
Unit 6 Module 2 Session 4
Unit 6 Module 4 Session 1</td>
<td>September: Calendar Grid
September: Days in School
October: Calendar Collector</td>
</tr>
<tr>
<td>(1.E.iii) create representations to record mathematical ideas</td>
<td>Unit 6 Module 1 Session 4
Unit 6 Module 2 Session 4
Unit 6 Module 4 Session 1</td>
<td>September: Calendar Grid
September: Days in School
October: Calendar Collector</td>
</tr>
<tr>
<td>(1.E.iv) use representations to record mathematical ideas</td>
<td>Unit 6 Module 1 Session 4
Unit 6 Module 2 Session 4
Unit 6 Module 4 Session 1</td>
<td>September: Calendar Grid
September: Days in School
October: Calendar Collector</td>
</tr>
<tr>
<td>(1.E.v) create representations to communicate mathematical ideas</td>
<td>Unit 6 Module 1 Session 4
Unit 6 Module 2 Session 4
Unit 6 Module 4 Session 1</td>
<td>September: Calendar Grid
September: Days in School
October: Calendar Collector</td>
</tr>
<tr>
<td>(1.E.vi) use representations to communicate mathematical ideas</td>
<td>Unit 6 Module 1 Session 4
Unit 6 Module 2 Session 4
Unit 6 Module 4 Session 1</td>
<td>September: Calendar Grid
September: Days in School
October: Calendar Collector</td>
</tr>
<tr>
<td>(1.F) analyze mathematical relationships to connect and communicate mathematical ideas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.F.i) analyze mathematical relationships to connect mathematical ideas</td>
<td>Unit 1 Module 4 Session 1
Unit 2 Module 1 Session 3
Unit 2 Module 1 Session 4</td>
<td>November: Calendar Grid
February: Calendar Collector
March: Calendar Collector</td>
</tr>
<tr>
<td>(1.F.ii) analyze mathematical relationships to communicate mathematical ideas</td>
<td>Unit 1 Module 4 Session 1
Unit 2 Module 1 Session 3
Unit 2 Module 1 Session 4</td>
<td>November: Calendar Grid
February: Calendar Collector
March: Calendar Collector</td>
</tr>
<tr>
<td>(1.G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.G.i) display mathematical ideas using precise mathematical language in written or oral communication</td>
<td>Unit 1 Module 1 Session 2
Unit 1 Module 4 Session 2
Unit 1 Module 4 Session 3</td>
<td>September: Calendar Collector
October: Calendar Collector
January: Calendar Collector</td>
</tr>
<tr>
<td>(1.G.ii) display mathematical arguments using precise mathematical language in written or oral communication</td>
<td>Unit 1 Module 1 Session 2
Unit 1 Module 4 Session 2
Unit 1 Module 4 Session 3</td>
<td>September: Calendar Collector
October: Calendar Collector
January: Calendar Collector</td>
</tr>
<tr>
<td>(1.G.iii) explain mathematical ideas using precise mathematical language in written or oral communication</td>
<td>Unit 1 Module 1 Session 2
Unit 1 Module 4 Session 2
Unit 1 Module 4 Session 3</td>
<td>September: Calendar Collector
October: Calendar Collector
January: Calendar Collector</td>
</tr>
<tr>
<td>(1.G.iv) explain mathematical arguments using precise mathematical language in written or oral communication</td>
<td>Unit 1 Module 1 Session 2
Unit 1 Module 4 Session 2
Unit 1 Module 4 Session 3</td>
<td>September: Calendar Collector
October: Calendar Collector
January: Calendar Collector</td>
</tr>
<tr>
<td>Standard, Expectation & Breakout</td>
<td>Bridges Citations</td>
<td>Number Corner Citations</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| *(1.G.v)* justify mathematical ideas using precise mathematical language in written or oral communication | Unit 1 Module 1 Session 2
Unit 1 Module 4 Session 2
Unit 1 Module 4 Session 3 | September: Calendar Collector
October: Calendar Collector
January: Calendar Collector |
| *(1.G.vi)* justify mathematical arguments using precise mathematical language in written or oral communication | Unit 1 Module 1 Session 2
Unit 1 Module 4 Session 2
Unit 1 Module 4 Session 3 | September: Calendar Collector
October: Calendar Collector
January: Calendar Collector |

(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:

| (2.A) recognize instantly the quantity of structured arrangements | Unit 1 Module 1 Session 4
Unit 1 Module 2 Session 1
Unit 1 Module 2 Session 2 | September: Calendar Grid
September: Computational Fluency
October: Days in School |
| (2.B) use concrete and pictorial models to compose and decompose numbers up to 120 in more than one way as so many hundreds, so many tens, and so many ones | Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 2
Unit 3 Module 3 Session 2 Home Connection | January: Days in School
February: Calendar Collector
February: Days in School |
| *(2.B.i)* use concrete models to compose numbers up to 120 in more than one way as so many hundreds, so many tens, and so many ones | Unit 4 Module 3 Session 1
Unit 4 Module 3 Session 2
Unit 6 Module 1 Session 4 | January: Days in School
February: Days in School
March: Days in School |
| *(2.B.ii)* use concrete models to decompose numbers up to 120 in more than one way as so many hundreds, so many tens, and so many ones | Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 2
Unit 3 Module 3 Session 2 Home Connection | January: Days in School
February: Calendar Collector
February: Days in School |
| *(2.B.iii)* use pictorial models to compose numbers up to 120 in more than one way as so many hundreds, so many tens, and so many ones | Unit 4 Module 3 Session 1
Unit 4 Module 3 Session 2
Unit 6 Module 1 Session 5 | January: Days in School
February: Days in School
March: Days in School |
| *(2.B.iv)* use pictorial models to decompose numbers up to 120 in more than one way as so many hundreds, so many tens, and so many ones | Unit 4 Module 1 Session 2
Unit 4 Module 1 Session 1
Unit 4 Module 2 Session 1 | December: Number Line
January: Days in School
April: Computational Fluency |
| *(2.C) use objects, pictures, and expanded and standard forms to represent numbers up to 120 | Unit 4 Module 4 Session 2
Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 5 | December: Number Line
January: Calendar Collector
January: Days in School |
| *(2.C.i)* use objects to represent numbers up to 120 | Unit 4 Module 1 Session 2
Unit 4 Module 1 Session 1
Unit 4 Module 2 Session 1 | December: Number Line
January: Days in School
April: Computational Fluency |
| *(2.C.ii)* use pictures to represent numbers up to 120 | Unit 4 Module 4 Session 2
Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 5 | December: Number Line
January: Calendar Collector
January: Days in School |
| *(2.C.iii)* use expanded form to represent numbers up to 120 | Unit 4 Module 1 Session 2
Unit 4 Module 1 Session 1
Unit 4 Module 2 Session 1 | December: Number Line
January: Days in School
April: Computational Fluency |
| *(2.C.iv)* use standard form to represent numbers up to 120 | Unit 4 Module 1 Session 2
Unit 4 Module 1 Session 1
Unit 4 Module 2 Session 1 | December: Number Line
January: Calendar Collector
January: Days in School |
| *(2.D) generate a number that is greater than or less than a given whole number up to 120 | Unit 4 Module 1 Session 1
Unit 4 Module 1 Session 2
Unit 7 Module 2 Session 1 | October: Number Line
November: Number Line
December: Number Line |
| *(2.E) use place value to compare whole numbers up to 120 using comparative language | Unit 7 Module 1 Session 4
Unit 7 Module 1 Session 5
Unit 7 Module 3 Session 3 | October: Days in School
November: Days in School
December: Days in School |
<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.F) order whole numbers up to 120 using place value and open number lines</td>
<td>Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 2
Unit 3 Module 3 Session 2 Home Connection</td>
<td>October: Number Line
November: Number Line
December: Number Line</td>
</tr>
<tr>
<td>(2.F.i) order whole numbers up to 120 using place value</td>
<td>Unit 4 Module 2 Session 1
Unit 4 Module 2 Session 2
Unit 4 Module 2 Session 3</td>
<td>October: Number Line
November: Number Line
December: Number Line</td>
</tr>
<tr>
<td>(2.F.ii) order whole numbers up to 120 using open number lines</td>
<td>Unit 7 Module 1 Session 2
Unit 7 Module 1 Session 3
Unit 7 Module 1 Session 4</td>
<td>October: Number Line
November: Number Line
December: Number Line</td>
</tr>
<tr>
<td>(2.G) represent the comparison of two numbers to 100 using the symbols >, <, or =</td>
<td>Unit 7 Module 1 Session 2
Unit 7 Module 1 Session 3
Unit 7 Module 1 Session 4</td>
<td>October: Number Line
November: Number Line
December: Number Line</td>
</tr>
<tr>
<td>(3) Number and operations. The student applies mathematical process standards to develop and use strategies for whole number addition and subtraction computations in order to solve problems. The student is expected to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.A) use concrete and pictorial models to determine the sum of a multiple of 10 and a one-digit number in problems up to 99</td>
<td>Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 2
Unit 7 Module 1 Session 1</td>
<td>September: Calendar Grid
October: Number Line
November: Number Line</td>
</tr>
<tr>
<td>(3.A.i) use concrete models to determine the sum of a multiple of 10 and a one-digit number in problems up to 99</td>
<td>Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 1
Unit 6 Module 1 Session 2 Home Connection</td>
<td>September: Days in School
October: Computational Fluency
November: Computational Fluency</td>
</tr>
<tr>
<td>(3.A.ii) use pictorial models to determine the sum of a multiple of 10 and a one-digit number in problems up to 99</td>
<td>Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 1
Unit 6 Module 1 Session 2 Home Connection</td>
<td>September: Days in School
October: Computational Fluency
November: Computational Fluency</td>
</tr>
<tr>
<td>(3.B) use objects and pictorial models to solve word problems involving joining, separating, and comparing sets within 20 and unknowns as any one of the terms in the problem such as 2 + 4 = []; 3 + [] = 7; and 5 = [] – 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.B.i) use objects to solve word problems involving joining sets within 20 and unknowns as any one of the terms in the problem</td>
<td>Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 1
Unit 6 Module 1 Session 2 Home Connection</td>
<td>October: Calendar Grid
January: Calendar Grid</td>
</tr>
<tr>
<td>(3.B.ii) use objects to solve word problems involving separating sets within 20 and unknowns as any one of the terms in the problem</td>
<td>Unit 6 Module 2 Session 2
Unit 6 Module 3 Session 2
Unit 6 Module 3 Session 4</td>
<td>October: Calendar Grid
January: Calendar Grid</td>
</tr>
<tr>
<td>(3.B.iii) use objects to solve word problems involving comparing sets within 20 and unknowns as any one of the terms in the problem</td>
<td>Unit 6 Module 1 Session 1
Unit 6 Module 1 Session 4
Unit 6 Module 3 Session 2</td>
<td>October: Calendar Grid
January: Calendar Grid</td>
</tr>
<tr>
<td>(3.B.iv) use pictorial models to solve word problems involving joining sets within 20 and unknowns as any one of the terms in the problem</td>
<td>Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 2 Home Connection
Unit 6 Module 1 Session 1</td>
<td>October: Calendar Grid
January: Calendar Grid</td>
</tr>
<tr>
<td>(3.B.v) use pictorial models to solve word problems involving separating sets within 20 and unknowns as any one of the terms in the problem</td>
<td>Unit 6 Module 2 Session 2
Unit 6 Module 3 Session 2
Unit 6 Module 3 Session 4</td>
<td>October: Calendar Grid
January: Calendar Grid</td>
</tr>
<tr>
<td>(3.B.vi) use pictorial models to solve word problems involving comparing sets within 20 and unknowns as any one of the terms in the problem</td>
<td>Unit 6 Module 1 Session 1
Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 2 Home Connection</td>
<td>October: Calendar Grid
January: Calendar Grid</td>
</tr>
<tr>
<td>(3.C) compose 10 with two or more addends with and without concrete objects</td>
<td>Unit 6 Module 1 Session 1
Unit 6 Module 1 Session 4
Unit 6 Module 3 Session 1</td>
<td>September: Days in School
October: Computational Fluency
November: Computational Fluency</td>
</tr>
<tr>
<td>(3.C.i) compose 10 with two or more addends with concrete objects</td>
<td>Unit 6 Module 1 Session 1
Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 2 Home Connection</td>
<td>September: Days in School
October: Computational Fluency
November: Computational Fluency</td>
</tr>
</tbody>
</table>
Texas Essential Knowledge & Skills (TEKS)
Bridges in Mathematics & Number Corner 2nd Edition

Grade 1

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3.D) apply basic fact strategies to add and subtract within 20, including making 10 and decomposing a number leading to a 10</td>
<td>Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 2 Home Connection
Unit 6 Module 1 Session 4</td>
<td>September: Days in School
September: Computational Fluency
October: Days in School</td>
</tr>
<tr>
<td>(3.D.i) apply basic fact strategies to add within 20, including making 10</td>
<td>Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 2 Home Connection
Unit 6 Module 1 Session 4</td>
<td>September: Days in School
September: Computational Fluency
October: Days in School</td>
</tr>
<tr>
<td>(3.D.ii) apply basic fact strategies to add within 20, including decomposing a number leading to a 10</td>
<td>Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 2 Home Connection
Unit 6 Module 1 Session 4</td>
<td>September: Days in School
September: Computational Fluency
October: Days in School</td>
</tr>
<tr>
<td>(3.D.iii) apply basic fact strategies to subtract within 20, including making 10</td>
<td>Unit 6 Module 1 Session 5
Unit 6 Module 1 Session 5 Home Connection
Unit 6 Module 2 Session 2</td>
<td>September: Days in School
September: Computational Fluency
October: Days in School</td>
</tr>
<tr>
<td>(3.D.iv) apply basic fact strategies to subtract within 20, including decomposing a number leading to a 10</td>
<td>Unit 6 Module 1 Session 5
Unit 6 Module 1 Session 5 Home Connection
Unit 6 Module 2 Session 2</td>
<td>September: Days in School
September: Computational Fluency
October: Days in School</td>
</tr>
<tr>
<td>(3.E) explain strategies used to solve addition and subtraction problems up to 20 using spoken words, objects, pictorial models, and number sentences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.E.i) explain strategies used to solve addition problems up to 20 using spoken words</td>
<td>Unit 6 Module 2 Session 2
Unit 6 Module 2 Session 3
Unit 6 Module 2 Session 5</td>
<td>October: Calendar Grid
December: Computational Fluency
January: Calendar Grid</td>
</tr>
<tr>
<td>(3.E.ii) explain strategies used to solve addition problems up to 20 using objects</td>
<td>Unit 6 Module 2 Session 2
Unit 6 Module 2 Session 3
Unit 6 Module 3 Session 4</td>
<td>October: Calendar Grid
December: Computational Fluency
January: Calendar Grid</td>
</tr>
<tr>
<td>(3.E.iii) explain strategies used to solve addition problems up to 20 using pictorial models</td>
<td>Unit 6 Module 2 Session 2
Unit 6 Module 2 Session 3
Unit 6 Module 3 Session 4</td>
<td>October: Calendar Grid
December: Computational Fluency
January: Calendar Grid</td>
</tr>
<tr>
<td>(3.E.iv) explain strategies used to solve addition problems up to 20 using number sentences</td>
<td>Unit 6 Module 2 Session 2
Unit 6 Module 2 Session 3
Unit 6 Module 3 Session 4</td>
<td>October: Calendar Grid
December: Computational Fluency
January: Calendar Grid</td>
</tr>
</tbody>
</table>

(3) Number and operations. The student applies mathematical process standards to develop and use strategies for whole number addition and subtraction computations in order to solve problems. The student is expected to:

(3.E) explain strategies used to solve addition and subtraction problems up to 20 using spoken words, objects, pictorial models, and number sentences		
(3.E.v) explain strategies used to solve subtraction problems up to 20 using spoken words	Unit 6 Module 3 Session 2 Unit 6 Module 3 Session 2 Home Connection Unit 6 Module 3 Session 4	October: Calendar Grid December: Computational Fluency January: Calendar Grid
(3.E.vi) explain strategies used to solve subtraction problems up to 20 using objects	Unit 6 Module 3 Session 2 Unit 6 Module 3 Session 2 Home Connection Unit 6 Module 3 Session 4	October: Calendar Grid December: Computational Fluency January: Calendar Grid
(3.E.vii) explain strategies used to solve subtraction problems up to 20 using pictorial models	Unit 6 Module 3 Session 2 Unit 6 Module 3 Session 2 Home Connection Unit 6 Module 3 Session 4	October: Calendar Grid December: Computational Fluency January: Calendar Grid
(3.E.viii) explain strategies used to solve subtraction problems up to 20 using number sentences	Unit 6 Module 3 Session 2 Unit 6 Module 3 Session 2 Home Connection Unit 6 Module 3 Session 4	October: Calendar Grid December: Computational Fluency January: Calendar Grid

(3.F) generate and solve problem situations when given a number sentence involving addition or subtraction of numbers within 20		
(3.F.i) generate problem situations when given a number sentence involving addition or subtraction of numbers within 20	Unit 6 Module 3 Session 1 Unit 6 Module 3 Session 2 Unit 6 Module 3 Session 2 Home Connection	October: Calendar Grid November: Computational Fluency January: Calendar Grid February: Computational Fluency
(3.F.ii) solve problem situations when given a number sentence involving addition or subtraction of numbers within 20	Unit 6 Module 3 Session 1 Unit 6 Module 3 Session 2 Unit 6 Module 3 Session 2 Home Connection	October: Calendar Grid January: Calendar Grid
Texas Essential Knowledge & Skills (TEKS)
Bridges in Mathematics & Number Corner 2nd Edition

Grade 1

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) Number and operations. The student applies mathematical process standards to identify coins, their values, and the relationships among them in order to recognize the need for monetary transactions. The student is expected to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.A) identify U.S. coins, including pennies, nickels, dimes, and quarters, by value and describe the relationships among them</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (4.A.i) identify U.S. coins, including **pennies**, by value | Unit 1 Module 3 Session 3
Unit 2 Module 4 Session 4
Unit 2 Module 4 Session 5 | September: Calendar Collector
January: Calendar Collector
March: Calendar Collector |
| (4.A.ii) identify U.S. coins, including **nickels**, by value | Unit 1 Module 3 Session 3
Unit 2 Module 4 Session 4
Unit 2 Module 4 Session 5 | September: Calendar Collector
March: Calendar Collector |
| (4.A.iii) identify U.S. coins, including **dimes**, by value | Unit 2 Module 4 Session 5
Unit 3 Module 3 Session 2 Home Connection
Unit 7 Module 4 Session 2 | January: Calendar Collector
March: Calendar Collector |
| (4.A.iv) identify U.S. coins, including **quarters**, by value | Unit 7 Module 4 Session 5 | May: Calendar Collector |
| (4.A.v) **describe the relationships among [U.S. coins, including pennies, nickels, dimes, and quarters]** | Unit 7 Module 4 Session 5 Home Connection | September: Calendar Collector
January: Calendar Collector
March: Calendar Collector |
| **(4.B) write a number with the cent symbol to describe the value of a coin** | | |
| | Unit 7 Module 4 Session 4
Unit 7 Module 4 Session 5 | January: Calendar Collector
March: Calendar Collector
May: Calendar Collector |
| **(4.C) use relationships to count by twos, fives, and tens to determine the value of a collection of pennies, nickels, and/or dimes** | | |
| (4.C.i) use relationships to count **by twos** to determine the value of a collection of pennies, nickels, and/or dimes | Unit 2 Module 4 Session 4
Unit 3 Module 2 Session 2
Unit 7 Module 4 Session 5 | September: Calendar Collector
March: Calendar Collector |
| (4.C.ii) use relationships to count **by fives** to determine the value of a collection of pennies, nickels, and/or dimes | Unit 2 Module 4 Session 5
Unit 3 Module 2 Session 2
Unit 7 Module 4 Session 4 | September: Calendar Collector
March: Calendar Collector |
| (4.C.iii) use relationships to count **by tens** to determine the value of a collection of pennies, nickels, and/or dimes | Unit 2 Module 4 Session 5
Unit 7 Module 4 Session 1
Unit 7 Module 4 Session 4 | January: Calendar Collector
March: Calendar Collector |
| **(5) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:** | | |
| **(5.A) recite numbers forward and backward from any given number between 1 and 120** | | |
| (5.A.i) recite numbers **forward** from any given number between 1 and 120 | Unit 1 Module 1 Session 3
Unit 1 Module 1 Session 4
Unit 1 Module 1 Session 5 | November: Days in School
January: Number Line
May: Number Line |
| (5.A.ii) recite numbers **backward** from any given number between 1 and 120 | Unit 1 Module 2 Session 3
Unit 1 Module 4 Session 1 | November: Days in School
January: Number Line
May: Number Line |
| **(5.B) skip count by twos, fives, and tens to determine the total number of objects up to 120 in a set** | | |
| (5.B.i) skip count **by twos** to determine the total number of objects up to 120 in a set | Unit 2 Module 4 Session 1
Unit 2 Module 4 Session 2
Unit 2 Module 4 Session 3 | September: Days in School
October: Days in School
May: Days in School |
| (5.B.ii) skip count **by fives** to determine the total number of objects up to 120 in a set | Unit 1 Module 3 Session 2
Unit 2 Module 4 Session 1
Unit 7 Module 2 Session 5 | September: Calendar Grid
May: Days in School
May: Number Line |
| (5.B.iii) skip count **by tens** to determine the total number of objects up to 120 in a set | Unit 1 Module 3 Session 2
Unit 2 Module 4 Session 1
Unit 7 Module 2 Session 5 | September: Calendar Grid
May: Days in School
May: Number Line |
<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
</table>
| (5.C) use relationships to determine the number that is 10 more and 10 less than a given number up to 120 | Unit 7 Module 2 Session 3
Unit 7 Module 3 Session 3
Unit 7 Module 3 Session 4
March: Days in School
April: Computational Fluency
April: Number Line | |
| (5.C.i) use relationships to determine the number that is 10 \textbf{more} than a given number up to 120 | Unit 7 Module 3 Session 3
Unit 7 Module 3 Session 4
Unit 7 Module 3 Session 5
March: Days in School
April: Computational Fluency
April: Number Line | |
| (5.C.ii) use relationships to determine the number that is 10 \textbf{less} than a given number up to 120 | Unit 7 Module 3 Session 3
Unit 7 Module 3 Session 4
Unit 7 Module 3 Session 5
March: Days in School
April: Computational Fluency
April: Number Line | |
| (5.D) represent word problems involving addition and subtraction of whole numbers up to 20 using concrete and pictorial models and number sentences | Unit 1 Module 2 Session 5 Home Connection
Unit 1 Module 3 Session 1
Unit 2 Module 2 Session 2
October: Calendar Grid
January: Calendar Grid | |
| (5.D.i) represent word problems involving \textbf{addition} of whole numbers up to 20 using \textbf{concrete models} | Unit 7 Module 3 Session 1
Unit 7 Module 3 Session 2
Unit 7 Module 3 Session 2 Home Connection
October: Calendar Grid
January: Calendar Grid | |
| (5.D.ii) represent word problems involving \textbf{subtraction} of whole numbers up to 20 using \textbf{pictorial models} | Unit 7 Module 3 Session 1
Unit 7 Module 3 Session 2
Unit 7 Module 3 Session 2 Home Connection
October: Calendar Grid
January: Calendar Grid | |
| (5.D.iii) represent word problems involving \textbf{addition} of whole numbers up to 20 using \textbf{number sentences} | Unit 7 Module 3 Session 1
Unit 7 Module 3 Session 2
Unit 7 Module 3 Session 2 Home Connection
October: Calendar Grid
January: Calendar Grid | |
| (5.D.iv) represent word problems involving \textbf{subtraction} of whole numbers up to 20 using \textbf{concrete models} | Unit 3 Module 2 Session 3
Unit 3 Module 2 Session 5
Unit 4 Module 4 Session 5
October: Calendar Grid
January: Calendar Grid | |
| (5.D.v) represent word problems involving \textbf{subtraction} of whole numbers up to 20 using \textbf{pictorial models} | Unit 3 Module 2 Session 3
Unit 3 Module 2 Session 5
Unit 4 Module 4 Session 5
October: Calendar Grid
January: Calendar Grid | |
| (5.D.vi) represent word problems involving \textbf{subtraction} of whole numbers up to 20 using \textbf{number sentences} | Unit 4 Module 4 Session 5
Unit 6 Module 1 Session 1
Unit 6 Module 1 Session 2
October: Calendar Grid
January: Calendar Grid | |
| (5.E) understand that the equal sign represents a relationship where expressions on each side of the equal sign represent the same value(s) | Unit 2 Module 1 Session 3
Unit 2 Module 2 Session 4
Unit 3 Module 1 Session 5
January: Calendar Grid
January: Days in School
February: Days in School | |
| (5.F) determine the unknown whole number in an addition or subtraction equation when the unknown may be any one of the three or four terms in the equation | Unit 3 Module 1 Session 1
Unit 3 Module 1 Session 5
Unit 3 Module 2 Session 1
October: Calendar Grid
October: Computational Fluency
January: Calendar Grid | |
| (5.G) apply properties of operations to add and subtract two or three numbers | Unit 3 Module 1 Session 5
Unit 6 Module 2 Session 3
Unit 6 Module 4 Session 2 Home Connection
September: Computational Fluency
October: Computational Fluency
November: Computational Fluency | |
| (5.G.i) apply properties of operations to \textbf{add} two or three numbers | Unit 3 Module 1 Session 5
Unit 6 Module 2 Session 3
Unit 6 Module 4 Session 2 Home Connection
September: Computational Fluency
October: Computational Fluency
November: Computational Fluency | |
| (5.G.ii) apply properties of operations to \textbf{subtract} two or three numbers | Unit 3 Module 1 Session 5
Unit 3 Module 2 Session 5
Unit 3 Module 2 Session 5 Home Connection
September: Computational Fluency
October: Computational Fluency
November: Computational Fluency | |
<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.A) classify and sort regular and irregular two-dimensional shapes based on attributes using informal geometric language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.A.i) classify regular two-dimensional shapes based on attributes using informal geometric language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October: Calendar Collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.A.ii) classify irregular two-dimensional shapes based on attributes using informal geometric language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.A.iii) sort regular two-dimensional shapes based on attributes using informal geometric language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October: Calendar Collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.A.iv) sort irregular two-dimensional shapes based on attributes using informal geometric language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.B) distinguish between attributes that define a two-dimensional or three-dimensional figure and attributes that do not define the shape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.C) create two-dimensional figures, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.C.i) create two-dimensional figures, including circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 2 Home Connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.C.ii) create two-dimensional figures, including triangles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 1 Work Place 1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 3 Work Place 1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 Module 2 Session 2 Home Connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.C.iii) create two-dimensional figures, including rectangles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 1 Work Place 1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 3 Work Place 1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 Module 2 Session 2 Home Connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.C.iv) create two-dimensional figures, including squares, as special rectangles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 1 Work Place 1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 3 Work Place 1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 Module 2 Session 2 Home Connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.C.v) create two-dimensional figures, including rhombuses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 1 Work Place 1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 3 Work Place 1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 Module 2 Session 2 Home Connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.C.vi) create two-dimensional figures, including hexagons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 1 Work Place 1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 3 Work Place 1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 Module 2 Session 2 Home Connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.D) identify two-dimensional shapes, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons and describe their attributes using formal geometric language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.D.i) identify two-dimensional shapes, including circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 2 Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 2 Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.D.ii) describe [circles’] attributes using formal geometric language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 1 Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5 Module 2 Session 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.D.iii) identify two-dimensional shapes, including triangles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 1 Work Place 1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 3 Work Place 1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 Module 1 Session 3 Work Place 1E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October: Calendar Collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April: Calendar Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard, Expectation & Breakout</td>
<td>Bridges Citations</td>
<td>Number Corner Citations</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>(6.D.iv) describe [triangles’] attributes using formal geometric language</td>
<td>Unit 5 Module 1 Session 1
Unit 5 Module 1 Session 2
Unit 5 Module 1 Session 3</td>
<td>October: Calendar Collector
February: Calendar Grid
April: Calendar Grid</td>
</tr>
<tr>
<td>(6.D.v) identify two-dimensional shapes, including rectangles</td>
<td>Unit 1 Module 1 Session 1 Work Place 1B
Unit 1 Module 1 Session 3 Work Place 1D
Unit 1 Module 1 Session 3 Work Place 1E</td>
<td>February: Calendar Grid
April: Calendar Grid</td>
</tr>
<tr>
<td>(6.D.vi) describe [rectangles’] attributes using formal geometric language</td>
<td>Unit 5 Module 1 Session 1
Unit 5 Module 1 Session 2
Unit 5 Module 1 Session 3
Unit 5 Module 1 Session 5</td>
<td>February: Calendar Grid
April: Calendar Grid</td>
</tr>
<tr>
<td>(6.D.vii) identify two-dimensional shapes, including squares, as special rectangles</td>
<td>Unit 1 Module 1 Session 1 Work Place 1B
Unit 1 Module 1 Session 3 Work Place 1D
Unit 1 Module 1 Session 3 Work Place 1E</td>
<td>February: Calendar Grid
April: Calendar Grid</td>
</tr>
<tr>
<td>(6.D.viii) describe [squares’] attributes using formal geometric language</td>
<td>Unit 5 Module 4 Session 1
Unit 5 Module 4 Session 2
Unit 5 Module 4 Session 3</td>
<td>February: Calendar Grid
April: Calendar Grid</td>
</tr>
<tr>
<td>(6.D.ix) identify two-dimensional shapes, including rhombuses</td>
<td>Unit 1 Module 1 Session 1 Work Place 1B
Unit 1 Module 1 Session 3 Work Place 1D
Unit 1 Module 1 Session 3 Work Place 1E</td>
<td>October: Calendar Collector
February: Calendar Grid
April: Calendar Grid</td>
</tr>
<tr>
<td>(6.D.x) describe [rhombuses’] attributes using formal geometric language</td>
<td>Unit 5 Module 1 Session 1
Unit 5 Module 1 Session 2
Unit 5 Module 1 Session 3</td>
<td>October: Calendar Collector
February: Calendar Grid
April: Calendar Grid</td>
</tr>
<tr>
<td>(6.D.xi) identify two-dimensional shapes, including hexagons</td>
<td>Unit 1 Module 1 Session 1 Work Place 1B
Unit 1 Module 1 Session 3 Work Place 1D
Unit 1 Module 1 Session 3 Work Place 1E</td>
<td>October: Calendar Collector
April: Calendar Grid</td>
</tr>
<tr>
<td>(6.D.xii) describe [hexagons’] attributes using formal geometric language</td>
<td>Unit 5 Module 1 Session 1
Unit 5 Module 1 Session 2
Unit 5 Module 1 Session 3</td>
<td>October: Calendar Collector
April: Calendar Grid</td>
</tr>
<tr>
<td>(6.E) identify three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes), and triangular prisms, and describe their attributes using formal geometric language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.E.i) identify three-dimensional solids, including spheres</td>
<td>Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3</td>
<td>December: Calendar Collector</td>
</tr>
<tr>
<td>(6.E.ii) describe [spheres’] attributes using formal geometric language</td>
<td>Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3</td>
<td>December: Calendar Collector</td>
</tr>
<tr>
<td>(6.E.iii) identify three-dimensional solids, including cones</td>
<td>Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3</td>
<td>December: Calendar Collector</td>
</tr>
<tr>
<td>(6.E.iv) describe [cones’] attributes using formal geometric language</td>
<td>Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3</td>
<td>December: Calendar Collector</td>
</tr>
<tr>
<td>(6.E.v) identify three-dimensional solids, including cylinders</td>
<td>Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3</td>
<td>December: Calendar Collector</td>
</tr>
<tr>
<td>(6.E.vi) describe [cylinders’] attributes using formal geometric language</td>
<td>Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3</td>
<td>December: Calendar Collector</td>
</tr>
<tr>
<td>(6.E.vii) identify three-dimensional solids, including rectangular prisms (including cubes)</td>
<td>Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3</td>
<td>December: Calendar Collector</td>
</tr>
<tr>
<td>Standard, Expectation & Breakout</td>
<td>Bridges Citations</td>
<td>Number Corner Citations</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| (6.E.viii) describe [rectangular prisms (including cubes)] attributes using formal geometric language | Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3 | December: Calendar Collector |
| (6.E.ix) identify three-dimensional solids, including triangular prisms | Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3 | December: Calendar Collector |
| (6.E.x) describe [triangular prisms] attributes using formal geometric language | Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 2
Unit 5 Module 2 Session 3 | December: Calendar Collector |
| (6.F) compose two-dimensional shapes by joining two, three, or four figures to produce a target shape in more than one way if possible | Unit 5 Module 3 Session 1
Unit 5 Module 3 Session 2
Unit 5 Module 3 Session 6 | October: Calendar Collector
April: Calendar Grid |
| (6.G) partition two-dimensional figures into two and four fair shares or equal parts and describe the parts using words | | |
| (6.G.i) partition two-dimensional figures into **two fair shares** or equal parts | Unit 2 Module 4 Session 1
Unit 5 Module 3 Session 3
Unit 5 Module 3 Session 4 | April: Calendar Grid |
| (6.G.ii) partition two-dimensional figures into **four fair shares** or equal parts | Unit 2 Module 4 Session 1
Unit 5 Module 3 Session 3
Unit 5 Module 3 Session 4 | April: Calendar Grid |
| (6.G.iii) describe the parts using words | Unit 2 Module 4 Session 1
Unit 5 Module 3 Session 3
Unit 5 Module 3 Session 4 | April: Calendar Grid |
| (6.H) identify examples and non-examples of halves and fourths | | |
| (6.H.i) identify **examples** of halves | Unit 2 Module 4 Session 1
Unit 5 Module 3 Session 3
Unit 5 Module 3 Session 4 | November: Calendar Grid
November: Calendar Collector
April: Calendar Grid |
| (6.H.ii) identify **examples** of fourths | Unit 2 Module 4 Session 1
Unit 5 Module 3 Session 3
Unit 5 Module 3 Session 4 | November: Calendar Grid
April: Calendar Grid
May: Calendar Collector |
| (6.H.iii) identify **non-examples** of halves | Unit 5 Module 3 Session 3
Unit 5 Module 3 Session 4
Unit 5 Module 3 Session 5 | November: Calendar Grid
November: Calendar Collector
April: Calendar Grid |
| (6.H.iv) identify **non-examples** of fourths | Unit 5 Module 3 Session 3
Unit 5 Module 3 Session 4
Unit 5 Module 3 Session 5 | November: Calendar Grid
April: Calendar Grid |
| (7) Geometry and measurement. The student applies mathematical process standards to select and use units to describe length and time. The student is expected to: | | |
| (7.A) use measuring tools to measure the length of objects to reinforce the continuous nature of linear measurement | Unit 4 Module 4 Session 1
Unit 4 Module 4 Session 2
Unit 4 Module 4 Session 3 | April: Calendar Collector |
| (7.B) illustrate that the length of an object is the number of same-size units of length that, when laid end-to-end with no gaps or overlaps, reach from one end of the object to the other | Unit 1 Module 3 Session 5
Unit 1 Module 4 Session 2
Unit 1 Module 4 Session 3 | April: Calendar Collector |
<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
</table>
| (7.C) measure the same object/distance with units of two different lengths | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 |
| (7.C.i) measure the same object/distance with units of two different lengths | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 |
| (7.C.ii) describe how the measurements differ | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 |
| (7.C.iii) describe why the measurements differ | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 |
| (7.D) describe a length to the nearest whole unit using a number and a unit | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 | April: Calendar Collector |
| (7.E) tell time to the hour and half hour using analog and digital clocks | Unit 4 Module 4 Session 3
Unit 4 Module 4 Session 4
Unit 4 Module 4 Session 5 | April: Calendar Collector |
| (7.E.i) tell time to the hour using analog clocks | Unit 7 Module 4 Session 2
Unit 8 Module 1 Session 2
Unit 8 Module 1 Session 5 | November: Calendar Collector
December: Calendar Collector
March: Calendar Grid |
| (7.E.ii) tell time to the hour using digital clocks | Unit 7 Module 4 Session 2
Unit 8 Module 1 Session 2
Unit 8 Module 4 Session 2 | November: Calendar Collector
December: Calendar Collector
March: Calendar Grid |
| (7.E.iii) tell time to half hour using analog clocks | Unit 6 Module 4 Session 2
Unit 8 Module 1 Session 2
Unit 8 Module 1 Session 5 | November: Calendar Collector
March: Calendar Grid |
| (7.E.iv) tell time to the half hour using digital clocks | Unit 7 Module 4 Session 2
Unit 8 Module 1 Session 2
Unit 8 Module 4 Session 2 | November: Calendar Collector
March: Calendar Grid |
| (8) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to: | | |
| (8.A) collect, sort, and organize data in up to three categories using models/representations such as tally marks or T-charts | Unit 1 Module 1 Session 2
Unit 1 Module 1 Session 4
Unit 1 Module 3 Session 3 | January: Calendar Collector
February: Calendar Collector
March: Calendar Collector |
| (8.A.i) collect data in up to three categories using models/representations | Unit 1 Module 1 Session 2
Unit 1 Module 1 Session 4
Unit 1 Module 3 Session 3 | January: Calendar Collector
February: Calendar Collector
March: Calendar Collector |
| (8.A.ii) sort data in up to three categories using models/representations | Unit 1 Module 1 Session 2
Unit 1 Module 1 Session 4
Unit 1 Module 3 Session 3 | January: Calendar Collector
February: Calendar Collector
March: Calendar Collector |
| (8.A.iii) organize data in up to three categories using models/representations | Unit 1 Module 1 Session 2
Unit 1 Module 1 Session 4
Unit 1 Module 3 Session 3 | January: Calendar Collector
February: Calendar Collector
March: Calendar Collector |
| (8.B) use data to create picture and bar-type graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | January: Calendar Collector
February: Calendar Collector
March: Calendar Collector |
| (8.B.i) use data to create picture graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | January: Calendar Collector
February: Calendar Collector
March: Calendar Collector |
| (8.B.ii) use data to create bar-type graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | January: Calendar Collector
February: Calendar Collector
March: Calendar Collector |
<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
</table>
| (8.C) draw conclusions and generate and answer questions using information from picture and bar-type graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | September: Calendar Collector
October: Calendar Collector
January: Calendar Collector |
| (8.C.i) draw conclusions using information from picture graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | September: Calendar Collector
October: Calendar Collector
January: Calendar Collector |
| (8.C.ii) draw conclusions using information from bar-type graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | September: Calendar Collector
October: Calendar Collector
January: Calendar Collector |
| (8.C.iii) generate questions using information from picture graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | September: Calendar Collector
October: Calendar Collector
January: Calendar Collector |
| (8.C.iv) generate questions using information from bar-type graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | September: Calendar Collector
October: Calendar Collector
January: Calendar Collector |
| (8.C.v) answer questions using information from picture graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | September: Calendar Collector
October: Calendar Collector
January: Calendar Collector |
| (8.C.vi) answer questions using information from bar-type graphs | Unit 1 Module 1 Session 2
Unit 1 Module 3 Session 3
Unit 2 Module 3 Session 3 | September: Calendar Collector
October: Calendar Collector
January: Calendar Collector |
| (9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. | Not addressed | Not addressed |