Texas Essential Knowledge & Skills (TEKS)

Bridges in Mathematics & Number Corner 2nd Edition

The following citations are representative, not comprehensive.

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.A) apply mathematics to problems arising in everyday life, society, and the workplace</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (1.A.i) apply mathematics to problems arising in **everyday life** | Unit 1 Module 1 Session 1
Unit 1 Module 2 Session 3
Unit 1 Module 2 Session 4 | September: Computational Fluency
October: Calendar Grid
November: Calendar Collector |
| (1.A.ii) apply mathematics to problems arising in **society** | Unit 1 Module 2 Session 4
Unit 1 Module 3 Session 4
Unit 1 Module 3 Session 5 | September: Computational Fluency
October: Calendar Grid
November: Calendar Collector |
| (1.A.iii) apply mathematics to problems arising in **the workplace** | Unit 1 Module 1 Session 1
Unit 1 Module 2 Session 4
Unit 2 Module 3 Session 6 | September: Computational Fluency
October: Calendar Grid
November: Calendar Collector |
| **(1.B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution** | | |
| (1.B.i) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the **problem-solving process** | Unit 4 Module 4 Session 1
Unit 5 Module 2 Session 4
Unit 6 Module 1 Session 1 | September: Calendar Grid
December: Calendar Grid
February: Calendar Grid |
| (1.B.ii) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the **reasonableness of the solution** | Unit 7 Module 2 Session 1
Unit 7 Module 2 Session 2
Unit 7 Module 3 Session 2 | September: Calendar Grid
December: Calendar Grid
February: Calendar Grid |
| **(1.C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems** | | |
| (1.C.i) select tools, including **real objects** as appropriate, to solve problems | Unit 3 Module 1 Session 2
Unit 3 Module 2 Session 1
Unit 4 Module 1 Session 1 | March: Number Line
April: Calendar Collector
May: Calendar Collector |
| (1.C.ii) select tools, including **manipulatives** as appropriate, to solve problems | Unit 1 Module 2 Session 2
Unit 1 Module 3 Session 1
Unit 1 Module 3 Session 2 | March: Number Line
April: Calendar Collector
May: Calendar Collector |
| (1.C.iii) select tools, including **paper and pencil** as appropriate, to solve problems | Unit 1 Module 2 Session 2
Unit 1 Module 3 Session 1
Unit 1 Module: Session 2 | March: Number Line
April: Calendar Collector
May: Calendar Collector |
| (1.C.iv) select tools, including **technology** as appropriate, to solve problems | Unit 1 Module 2 Session 2
Unit 1 Module 3 Session 1
Unit 1 Module 3 Session 2
Each of the sessions cited employs a manipulative that is also available in digital format within the Bridges Educator site. | March: Number Line
April: Calendar Collector
May: Calendar Collector |
| (1.C.v) select techniques, including **mental math** as appropriate, to solve problems | Unit 2 Module 2 Session 2
Unit 2 Module 3 Session 4
Unit 1 Module 4 Session 1 | March: Number Line
April: Calendar Collector
May: Calendar Collector |
| (1.C.vi) select techniques, including **estimation** as appropriate, to solve problems | Unit 4 Module 1 Session 1
Unit 4 Module 1 Session 2
Unit 4 Module 1 Session 3 | March: Number Line
April: Calendar Collector
May: Calendar Collector |
| (1.C.vii) select techniques, including **number sense** as appropriate, to solve problems | Unit 1 Module 3 Session 1
Unit 1 Module 3 Session 2
Unit 1 Module 4 Session 1 | March: Number Line
April: Calendar Collector
May: Calendar Collector |
Texas Essential Knowledge & Skills (TEKS)
Bridges in Mathematics & Number Corner 2nd Edition

Grade 2

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
</table>
| (1.D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate | Unit 1 Module 1 Session 4
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.ii) communicate mathematical ideas using multiple representations, including symbols as appropriate | Unit 2 Module 3 Session 6
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.iii) communicate mathematical ideas using multiple representations, including diagrams as appropriate | Unit 1 Module 1 Session 4
Unit 5 Module 2 Session 2
Unit 8 Module 2 Session 5 | December: Calendar Grid
January: Calendar Collector |
| (1.D.iv) communicate mathematical ideas using multiple representations, including language as appropriate | Unit 2 Module 3 Session 6
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.v) communicate mathematical reasoning using multiple representations, including symbols as appropriate | Unit 1 Module 1 Session 4
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.vi) communicate mathematical reasoning using multiple representations, including diagrams as appropriate | Unit 2 Module 3 Session 6
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.vii) communicate mathematical reasoning using multiple representations, including graphs as appropriate | Unit 1 Module 1 Session 4
Unit 5 Module 2 Session 2
Unit 8 Module 2 Session 5 | December: Calendar Grid
January: Calendar Collector |
| (1.D.viii) communicate mathematical reasoning using multiple representations, including language as appropriate | Unit 2 Module 3 Session 6
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.ix) communicate mathematical ideas’ implications using multiple representations, including symbols as appropriate | Unit 1 Module 1 Session 4
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.x) communicate mathematical ideas’ implications using multiple representations, including diagrams as appropriate | Unit 2 Module 3 Session 6
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.xi) communicate mathematical ideas’ implications using multiple representations, including graphs as appropriate | Unit 1 Module 1 Session 4
Unit 5 Module 2 Session 2
Unit 8 Module 2 Session 5 | December: Calendar Grid
January: Calendar Collector |
| (1.D.xii) communicate mathematical ideas’ implications using multiple representations, including language as appropriate | Unit 2 Module 3 Session 6
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.xiii) communicate mathematical reasoning’s implications using multiple representations, including symbols as appropriate | Unit 1 Module 1 Session 4
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.xiv) communicate mathematical reasoning’s implications using multiple representations, including diagrams as appropriate | Unit 2 Module 3 Session 6
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
| (1.D.xv) communicate mathematical reasoning’s implications using multiple representations, including graphs as appropriate | Unit 1 Module 1 Session 4
Unit 5 Module 2 Session 2
Unit 8 Module 2 Session 5 | December: Calendar Grid
January: Calendar Collector |
| (1.D.xvi) communicate mathematical reasoning’s implications using multiple representations, including language as appropriate | Unit 2 Module 3 Session 6
Unit 2 Module 4 Session 2
Unit 3 Module 2 Session 2 | December: Calendar Grid
January: Calendar Collector
January: Computational Fluency |
<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.E) create and use representations to organize, record, and communicate mathematical ideas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (1.E.i) create representations to organize mathematical ideas | Unit 3 Module 4 Session 1
Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 4 | September: Calendar Grid
September: Daily Rectangle
October: Daily Rectangle |
| (1.E.ii) use representations to organize mathematical ideas | Unit 3 Module 4 Session 1
Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 4 | September: Calendar Grid
September: Daily Rectangle
October: Daily Rectangle |
| (1.E.iii) create representations to record mathematical ideas | Unit 3 Module 4 Session 1
Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 4 | September: Calendar Grid
September: Daily Rectangle
October: Daily Rectangle |
| (1.E.iv) use representations to record mathematical ideas | Unit 3 Module 4 Session 1
Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 4 | September: Calendar Grid
September: Daily Rectangle
October: Daily Rectangle |
| (1.E.v) create representations to communicate mathematical ideas | Unit 3 Module 4 Session 1
Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 4 | September: Calendar Grid
September: Daily Rectangle
October: Daily Rectangle |
| (1.E.vi) use representations to communicate mathematical ideas | Unit 3 Module 4 Session 1
Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 4 | September: Calendar Grid
September: Daily Rectangle
October: Daily Rectangle |
| **(1.F)** analyze mathematical relationships to connect and communicate mathematical ideas | | |
| (1.F.i) analyze mathematical relationships to connect mathematical ideas | Unit 5 Module 1 Session 1
Unit 5 Module 1 Session 4
Unit 5 Module 2 Session 3 | September: Computational Fluency
September: Number Line
October: Calendar Grid |
| (1.F.ii) analyze mathematical relationships to communicate mathematical ideas | Unit 5 Module 1 Session 1
Unit 5 Module 1 Session 4
Unit 5 Module 2 Session 3 | September: Computational Fluency
September: Number Line
October: Calendar Grid |
| **(1.G)** display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication | | |
| (1.G.i) display mathematical ideas using precise mathematical language in written or oral communication | Unit 1 Module 1 Session 4
Unit 2 Module 1 Session 5
Unit 2 Module 2 Session 3 | September: Calendar Collector
October: Calendar Collector
November: Calendar Grid |
| (1.G.ii) display mathematical arguments using precise mathematical language in written or oral communication | Unit 5 Module 1 Session 2
Unit 5 Module 1 Session 3
Unit 7 Module 1 Session 5 | September: Calendar Collector
October: Calendar Collector
November: Calendar Grid |
| (1.G.iii) explain mathematical ideas using precise mathematical language in written or oral communication | Unit 1 Module 1 Session 4
Unit 2 Module 1 Session 5
Unit 2 Module 2 Session 3 | September: Calendar Collector
October: Calendar Collector
November: Calendar Grid |
| (1.G.iv) explain mathematical arguments using precise mathematical language in written or oral communication | Unit 5 Module 1 Session 2
Unit 5 Module 1 Session 3
Unit 7 Module 1 Session 5 | September: Calendar Collector
October: Calendar Collector
November: Calendar Grid |
| (1.G.v) justify mathematical ideas using precise mathematical language in written or oral communication | Unit 3 Module 3 Session 2
Unit 3 Module 3 Session 6
Unit 3 Module 3 Session 7 | September: Calendar Collector
October: Calendar Collector
November: Calendar Grid |
| (1.G.vi) justify mathematical arguments using precise mathematical language in written or oral communication | Unit 5 Module 1 Session 2
Unit 5 Module 1 Session 3
Unit 7 Module 1 Session 5 | September: Calendar Collector
October: Calendar Collector
November: Calendar Grid |
Texas Essential Knowledge & Skills (TEKS)

Bridges in Mathematics & Number Corner 2nd Edition

GRADE 2

continued

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **(2.A) use concrete and pictorial models to compose and decompose numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, and ones** | **(2.A.i) use concrete models to compose** numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, and ones | November: Number Line
December: Number Line
May: Calendar Grid |
| | **(2.A.ii) use concrete models to decompose** numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, and ones | December: Number Line
May: Calendar Grid |
| | **(2.A.iii) use pictorial models to compose** numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, and ones | November: Number Line
December: Number Line
May: Calendar Grid |
| | **(2.A.iv) use pictorial models to decompose** numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, and ones | December: Number Line
May: Calendar Grid |
| **(2.B) use standard, word, and expanded forms to represent numbers up to 1,200** | **(2.B.i) use standard form** to represent numbers up to 1,200 | September: Number Line
October: Number Line
November: Number Line |
| | **(2.B.ii) use word form** to represent numbers up to 1,200 | | |
| | **(2.B.iii) use expanded form** to represent numbers up to 1,200 | November: Number Line
December: Number Line
January: Number Line |
| **(2.C) generate a number that is greater than or less than a given whole number up to 1,200** | **Unit 3 Module 1 Session 4**
Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 1 Work Place 3D
Unit 2 Module 1 Session 1
Unit 4 Module 2 Session 4 Home Connection | October: Number Line
November: Number Line
December: Number Line
January: Number Line |
| **(2.D) use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols (>, <, or =)** | **(2.D.i) use place value to compare** whole numbers up to 1,200 using comparative language, numbers, and symbols (>, <, or =) | October: Number Line
November: Daily Rectangle
December: Number Line |
| | **(2.D.ii) use place value to order** whole numbers up to 1,200 | October: Number Line
November: Daily Rectangle
December: Number Line |
| **(2.E) locate the position of a given whole number on an open number line** | **Unit 3 Module 1 Session 1**
Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 5
Unit 3 Module 1 Session 2 | September: Number Line
October: Number Line
November: Number Line |
| **(2.F) name the whole number that corresponds to a specific point on a number line** | **Unit 3 Module 1 Session 1**
Unit 3 Module 3 Session 1
Unit 3 Module 3 Session 5 | January: Number Line
February: Number Line
March: Number Line |
Texas Essential Knowledge & Skills (TEKS)
Bridges in Mathematics & Number Corner 2nd Edition

GRADE 2

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) Number and operations. The student applies mathematical process standards to recognize and represent fractional units and communicates how they are used to name parts of a whole. The student is expected to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.A) partition objects into equal parts and name the parts, including halves, fourths, and eighths, using words</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **(3.A.i)** partition objects into equal parts, including halves | Unit 6 Module 2 Session 3
Unit 6 Module 2 Session 2
Unit 6 Module 3 Session 5 Home Connection | November: Calendar Grid
December: Calendar Grid
January: Calendar Collector |
| **(3.A.ii)** partition objects into equal parts, including fourths | Unit 7 Module 2 Session 2
Unit 7 Module 2 Session 3
Unit 7 Module 2 Session 5 | November: Calendar Grid
December: Calendar Grid
March: Calendar Collector |
| **(3.A.iii)** partition objects into equal parts including eighths | Unit 7 Module 2 Session 3 | |
| **(3.A.iv)** name the parts using words | Unit 7 Module 2 Session 2
Unit 7 Module 2 Session 3
Unit 7 Module 2 Session 4 | November: Calendar Grid
January: Calendar Collector
February: Calendar Grid |
| **(3.B)** explain that the more fractional parts used to make a whole, the smaller the part; and the fewer the fractional parts, the larger the part | | |
| **(3.B.i)** explain that the more fractional parts used to make a whole, the smaller the part | Unit 7 Module 2 Session 2
Unit 7 Module 2 Session 3
Unit 7 Module 2 Session 4 Work Place 7D | April: Calendar Grid |
| **(3.B.ii)** explain that the fewer the fractional parts [used to make a whole], the larger the part | Unit 7 Module 2 Session 2
Unit 7 Module 2 Session 3
Unit 7 Module 2 Session 4 Work Place 7D | April: Calendar Grid |
| **(3.C)** use concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole | | |
| **(3.C.i)** use concrete models to count fractional parts beyond one whole using words | Unit 7 Module 2 Session 2
Unit 7 Module 2 Session 4 | |
| **(3.C.ii)** recognize how many parts it takes to equal one whole | Unit 6 Module 2 Session 3
Unit 6 Module 3 Session 2
Unit 6 Module 3 Session 5 | November: Calendar Grid
December: Calendar Grid
February: Calendar Grid |
| **(3.D)** identify examples and non-examples of halves, fourths, and eighths | | |
| **(3.D.i)** identify examples of halves | Unit 6 Module 2 Session 3
Unit 6 Module 3 Session 2
Unit 6 Module 3 Session 5 Home Connection | November: Calendar Grid
December: Calendar Grid
January: Calendar Collector |
| **(3.D.ii)** identify examples of fourths | Unit 7 Module 2 Session 2
Unit 7 Module 2 Session 3
Unit 7 Module 2 Session 5 | November: Calendar Grid
March: Calendar Collector
April: Calendar Grid |
| **(3.D.iii)** identify examples of eighths | Unit 7 Module 2 Session 3 | |
| **(3.D.iv)** identify non-examples of halves | | December: Calendar Grid
January: Calendar Collector
February: Calendar Grid |
| **(3.D.v)** identify non-examples of fourths | | March: Calendar Collector
April: Calendar Grid |
| **(3.D.vi)** identify non-examples of eighths | Unit 6 Module 4 Session 3 Challenge Activity
Unit 7 Module 2 Session 2
Unit 7 Module 2 Session 3 | |
<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve addition and subtraction problems with efficiency and accuracy. The student is expected to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.A) recall basic facts to add and subtract within 20 with automaticity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.A.i) recall basic facts to add within 20 with automaticity</td>
<td>Unit 1 Module 1 Session 5 Home Connection Unit 1 Module 2 Session 2 Unit 1 Module 2 Session 4</td>
<td>September: Calendar Grid September: Daily Rectangle September: Computational Fluency</td>
</tr>
<tr>
<td>(4.A.ii) recall basic facts to subtract within 20 with automaticity</td>
<td>Unit 1 Module 1 Session 5 Home Connection Unit 1 Module 2 Session 2 Unit 1 Module 2 Session 4</td>
<td>September: Calendar Grid September: Daily Rectangle September: Computational Fluency</td>
</tr>
<tr>
<td>(4.B) add up to four two-digit numbers and subtract two-digit numbers using mental strategies and algorithms based on knowledge of place value and properties of operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.B.i) add up to four two-digit numbers using mental strategies based on knowledge of place value</td>
<td>Unit 2 Module 3 Session 4 Unit 2 Module 3 Session 5 Unit 2 Module 3 Session 5</td>
<td>September: Number Line December: Daily Rectangle January: Daily Rectangle</td>
</tr>
<tr>
<td>(4.B.ii) add up to four two-digit numbers using mental strategies based on knowledge of properties of operations</td>
<td>Unit 2 Module 3 Session 4 Unit 2 Module 3 Session 5 Unit 2 Module 3 Session 5</td>
<td>September: Number Line December: Daily Rectangle January: Daily Rectangle</td>
</tr>
<tr>
<td>(4.B.iii) add up to four two-digit numbers using algorithms based on knowledge of place value</td>
<td>Unit 3 Module 3 Session 3 Home Connection Unit 3 Module 3 Session 4 Unit 3 Module 3 Session 4 Unit 3 Module 3 Session 5 Unit 3 Module 3 Session 6 Unit 3 Module 3 Session 2</td>
<td>December: Daily Rectangle January: Daily Rectangle January: Computational Fluency</td>
</tr>
<tr>
<td>(4.B.iv) add up to four two-digit numbers using algorithms based on knowledge of properties of operations</td>
<td>Unit 3 Module 3 Session 3 Home Connection Unit 3 Module 3 Session 7 Unit 3 Module 3 Session 7</td>
<td>December: Daily Rectangle January: Daily Rectangle January: Computational Fluency</td>
</tr>
<tr>
<td>(4.B.v) subtract two-digit numbers using mental strategies based on knowledge of place value</td>
<td>Unit 3 Module 3 Session 3 Home Connection Unit 3 Module 3 Session 7 Unit 3 Module 3 Session 7</td>
<td>January: Computational Fluency March: Number Line</td>
</tr>
<tr>
<td>(4.B.vi) subtract two-digit numbers using mental strategies based on knowledge of properties of operations</td>
<td>Unit 3 Module 3 Session 3 Home Connection Unit 3 Module 3 Session 7 Unit 3 Module 3 Session 7</td>
<td>January: Computational Fluency March: Number Line</td>
</tr>
<tr>
<td>(4.B.vii) subtract two-digit numbers using algorithms based on knowledge of place value</td>
<td>Unit 3 Module 2 Session 2 Unit 3 Module 3 Session 2 Unit 3 Module 3 Session 7 Home Connection</td>
<td>January: Computational Fluency March: Number Line</td>
</tr>
<tr>
<td>(4.B.viii) subtract two-digit numbers using algorithms based on knowledge of properties of operations</td>
<td>Unit 3 Module 2 Session 2 Unit 3 Module 3 Session 3 Home Connection Unit 3 Module 3 Session 7 Home Connection</td>
<td>January: Computational Fluency March: Number Line</td>
</tr>
</tbody>
</table>
Texas Essential Knowledge & Skills (TEKS)

Bridges in Mathematics & Number Corner 2nd Edition

continued

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4.C) solve one-step and multi-step word problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms</td>
<td>Unit 5 Module 1 Session 1 Home Connection
Unit 5 Module 3 Session 5
Unit 7 Module 1 Session 3 Home Connection</td>
<td>February: Calendar Grid
March: Number Line</td>
</tr>
<tr>
<td>(4.C.i) solve one-step word problems involving addition within 1,000 using a variety of strategies based on place value, including algorithms</td>
<td>Unit 5 Module 1 Session 1 Home Connection
Unit 5 Module 2 Session 4
Unit 5 Module 5 Session 5</td>
<td>February: Calendar Grid
March: Number Line</td>
</tr>
<tr>
<td>(4.C.ii) solve one-step word problems involving subtraction within 1,000 using a variety of strategies based on place value, including algorithms</td>
<td>Unit 5 Module 1 Session 1 Home Connection
Unit 5 Module 2 Session 4
Unit 5 Module 5 Session 5</td>
<td>February: Calendar Grid
March: Number Line</td>
</tr>
<tr>
<td>(4.C.iii) solve multi-step word problems involving addition within 1,000 using a variety of strategies based on place value, including algorithms</td>
<td>Unit 5 Module 2 Session 4 Home Connection
Unit 7 Module 3 Session 1
Unit 7 Module 3 Session 4</td>
<td>March: Number Line</td>
</tr>
<tr>
<td>(4.C.iv) solve multi-step word problems involving subtraction within 1,000 using a variety of strategies based on place value, including algorithms</td>
<td>Unit 5 Module 2 Session 4 Home Connection
Unit 7 Module 1 Session 5 Home Connection
Unit 7 Module 2 Session 5</td>
<td>March: Number Line</td>
</tr>
<tr>
<td>(4.D) generate and solve problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000</td>
<td>Unit 3 Module 3 Session 4
Unit 7 Module 4 Session 2
Unit 8 Module 3 Session 2</td>
<td>January: Number Line
March: Daily Rectangle
March: Number Line</td>
</tr>
<tr>
<td>(4.D.i) generate problem situations for a given mathematical number sentence involving addition of whole numbers within 1,000</td>
<td>Unit 3 Module 3 Session 4
Unit 7 Module 4 Session 2
Unit 8 Module 3 Session 2</td>
<td>January: Number Line
March: Daily Rectangle
March: Number Line</td>
</tr>
<tr>
<td>(4.D.ii) generate problem situations for a given mathematical number sentence involving subtraction of whole numbers within 1,000</td>
<td>Unit 3 Module 3 Session 4
Unit 6 Module 1 Session 5 Home Connection
Unit 8 Module 3 Session 2 Home Connection</td>
<td>January: Number Line
March: Daily Rectangle
March: Number Line</td>
</tr>
<tr>
<td>(4.D.iii) solve problem situations for a given mathematical number sentence involving addition of whole numbers within 1,000</td>
<td>Unit 3 Module 3 Session 5
Unit 3 Module 3 Session 6
Unit 3 Module 3 Session 7</td>
<td>January: Number Line
March: Daily Rectangle
March: Number Line</td>
</tr>
<tr>
<td>(4.D.iv) solve problem situations for a given mathematical number sentence involving subtraction of whole numbers within 1,000</td>
<td>Unit 3 Module 3 Session 5
Unit 3 Module 3 Session 6
Unit 3 Module 3 Session 7</td>
<td>January: Number Line
March: Daily Rectangle
March: Number Line</td>
</tr>
</tbody>
</table>

(5) Number and operations. The student applies mathematical process standards to determine the value of coins in order to solve monetary transactions. The student is expected to:

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5.A) determine the value of a collection of coins up to one dollar</td>
<td>Unit 3 Module 1 Session 3 Home Connection
Unit 1 Module 1 Session 5 Home Connection
Unit 1 Module 1 Session 3 Home Connection
Unit 2 Module 4 Session 2 Home Connection
Unit 3 Module 1 Session 5 Home Connection</td>
<td>March: Calendar Collector
March: Number Line</td>
</tr>
<tr>
<td>(5.B) use the cent symbol, dollar sign, and the decimal point to name the value of a collection of coins</td>
<td>Unit 5 Module 1 Session 1
Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 4</td>
<td>March: Calendar Collector
March: Number Line</td>
</tr>
<tr>
<td>(5.B.i) use the cent symbol to name the value of a collection of coins</td>
<td>Unit 5 Module 1 Session 1
Unit 5 Module 2 Session 1
Unit 5 Module 2 Session 4</td>
<td>March: Calendar Collector
March: Number Line</td>
</tr>
<tr>
<td>(5.B.ii) use the dollar sign and the decimal point to name the value of a collection of coins</td>
<td>Unit 5 Module 2 Session 5
Unit 5 Module 2 Session 6
Unit 5 Module 2 Session 6 Home Connection</td>
<td>March: Calendar Collector
March: Number Line</td>
</tr>
</tbody>
</table>
Texas Essential Knowledge & Skills (TEKS)
Bridges in Mathematics & Number Corner 2nd Edition
continued

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) Number and operations. The student applies mathematical process standards to connect repeated addition and subtraction to multiplication and division situations that involve equal groupings and shares. The student is expected to:**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.A) model, create, and describe contextual multiplication situations in which equivalent sets of concrete objects are joined</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **(6.A.i)** model contextual multiplication situations in which equivalent sets of concrete objects are joined | Unit 1 Module 3 Session 2
Unit 3 Module 4 Session 1 | October: Calendar Grid
October: Daily Rectangle |
| **(6.A.ii)** create contextual multiplication situations in which equivalent sets of concrete objects are joined | Unit 2 Module 4 Session 3
Unit 4 Module 4 Session 2
Unit 4 Module 4 Session 4 | October: Calendar Grid
October: Daily Rectangle |
| **(6.A.iii)** describe contextual multiplication situations in which equivalent sets of concrete objects are joined | Unit 2 Module 4 Session 3
Unit 4 Module 4 Session 4 | October: Calendar Grid
October: Daily Rectangle |
| **(6.B)** model, create, and describe contextual division situations in which a set of concrete objects is separated into equivalent sets | | |
| **(6.B.i)** model contextual division situations in which a set of concrete objects is separated into equivalent sets | Unit 3 Module 4 Session 1
Unit 1 Module 3 Session 2 | |
| **(6.B.ii)** create contextual division situations in which a set of concrete objects is separated into equivalent sets | Unit 3 Module 3 Session 2 Home Connection
Unit 7 Module 2 Session 1
Unit 7 Module 2 Session 2 | |
| **(6.B.iii)** describe contextual division situations in which a set of concrete objects is separated into equivalent sets | Unit 3 Module 3 Session 2 Home Connection
Unit 7 Module 2 Session 1
Unit 7 Module 2 Session 2 | |
| **(7)** Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:** |
| **(7.A)** determine whether a number up to 40 is even or odd using pairings of objects to represent the number | | |
| | Unit 5 Module 4 Session 1
Unit 5 Module 4 Session 2
Unit 5 Module 4 Session 3 | September: Calendar Grid
September: Daily Rectangle
October: Calendar Grid |
| **(7.B)** use an understanding of place value to determine the number that is 10 or 100 more or less than a given number up to 1,200 | | |
| | Unit 2 Module 3 Session 2
Unit 5 Module 1 Session 5
Unit 5 Module 2 Session 1 | October: Number Line
November: Number Line
December: Number Line |
| **(7.C)** represent and solve addition and subtraction word problems where unknowns may be any one of the terms in the problem | | |
| **(7.C.i)** represent addition word problems where unknowns may be any one of the terms in the problem | Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 2
Unit 3 Module 2 Session 2 Home Connection | September: Calendar Grid
January: Calendar Grid
February: Calendar Grid |
| **(7.C.ii)** represent subtraction word problems where unknowns may be any one of the terms in the problem | Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 2
Unit 3 Module 2 Session 2 Home Connection | September: Calendar Grid
January: Calendar Grid
February: Calendar Grid |
| **(7.C.iii)** solve addition word problems where unknowns may be any one of the terms in the problem | Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 2
Unit 3 Module 2 Session 2 Home Connection | September: Calendar Grid
January: Calendar Grid
February: Calendar Grid |
| **(7.C.iv)** solve subtraction word problems where unknowns may be any one of the terms in the problem | Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 2
Unit 3 Module 2 Session 2 Home Connection | September: Calendar Grid
January: Calendar Grid
February: Calendar Grid |
Texas Essential Knowledge & Skills (TEKS)
Bridges in Mathematics & Number Corner 2nd Edition
continued

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8.A) Create two-dimensional shapes based on given attributes, including number of sides and vertices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8.A.i) Create two-dimensional shapes based on given attributes, including number of sides</td>
<td>Unit 1 Module 1 Session 2 Work Place 1D Unit 6 Module 1 Session 2 Unit 6 Module 1 Session 3</td>
<td>December: Calendar Grid March: Calendar Grid</td>
</tr>
<tr>
<td>(8.A.ii) Create two-dimensional shapes based on given attributes, including number of vertices</td>
<td>Unit 1 Module 1 Session 2 Work Place 1D Unit 6 Module 1 Session 2 Unit 6 Module 1 Session 3</td>
<td>December: Calendar Grid March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B) Classify and sort three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and triangular prisms, based on attributes using formal geometric language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8.B.i) Classify three-dimensional solids, including spheres, based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B.ii) Classify three-dimensional solids, including cones, based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B.iii) Classify three-dimensional solids, including cylinders, based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B.iv) Classify three-dimensional solids, including rectangular prisms (including cubes as special rectangular prisms), based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B.v) Classify three-dimensional solids, including triangular prisms, based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B.vi) Sort three-dimensional solids, including spheres, based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B.vii) Sort three-dimensional solids, including cones, based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B.viii) Sort three-dimensional solids, including cylinders, based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B.ix) Sort three-dimensional solids, including rectangular prisms (including cubes as special rectangular prisms), based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.B.x) Sort three-dimensional solids, including triangular prisms, based on attributes using formal geometric language</td>
<td>Unit 6 Module 2 Session 4 Home Connection</td>
<td>March: Calendar Grid</td>
</tr>
<tr>
<td>(8.C) Classify and sort polygons with 12 or fewer sides according to attributes, including identifying the number of sides and number of vertices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8.C.i) Classify polygons with 12 or fewer sides according to attributes, including identifying the number of sides</td>
<td>Unit 6 Module 1 Session 2 Unit 6 Module 1 Session 3 Unit 6 Module 1 Session 4</td>
<td>December: Calendar Grid March: Calendar Grid</td>
</tr>
</tbody>
</table>
Texas Essential Knowledge & Skills (TEKS)

Bridges in Mathematics & Number Corner 2nd Edition

Grade 2

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
</table>
| **(8.C.ii) classify** polygons with 12 or fewer sides according to attributes, including identifying the number of vertices | Unit 6 Module 1 Session 2
Unit 6 Module 1 Session 3
Unit 6 Module 1 Session 4 | December: Calendar Grid
March: Calendar Grid |
| **(8.C.iii) sort** polygons with 12 or fewer sides according to attributes, including identifying the number of sides | Unit 1 Module 1 Session 2 Work Place 1B
Unit 6 Module 1 Session 4
Unit 6 Module 1 Session 5 | December: Calendar Grid
March: Calendar Grid |
| **(8.C.iv) sort** polygons with 12 or fewer sides according to attributes, including identifying the number of vertices | Unit 1 Module 1 Session 2 Work Place 1B
Unit 6 Module 1 Session 4
Unit 6 Module 1 Session 5 | December: Calendar Grid
March: Calendar Grid |
| **(8.D) compose two-dimensional shapes and three-dimensional solids with given properties or attributes** | | |
| **(8.D.i) compose two-dimensional shapes with given properties or attributes** | Unit 1 Module 1 Session 2 Work Place 1B
Unit 6 Module 3 Session 2
Unit 6 Module 3 Session 5 Work Place 6D | November: Calendar Grid
December: Calendar Grid
January: Calendar Collector |
| **(8.D.ii) compose three-dimensional solids with given properties or attributes** | | March: Calendar Grid |
| **(8.E) decompose two-dimensional shapes such as cutting out a square from a rectangle, dividing a shape in half, or partitioning a rectangle into identical triangles and identify the resulting geometric parts** | | |
| **(8.E.i) decompose two-dimensional shapes** | Unit 6 Module 3 Session 2
Unit 6 Module 3 Session 3 Home Connection
Unit 6 Module 3 Session 5 Work Place 6D | April: Daily Rectangle
May: Daily Rectangle |
| **(8.E.ii) identify the resulting geometric parts** | Unit 6 Module 3 Session 2
Unit 6 Module 3 Session 3 Home Connection
Unit 6 Module 3 Session 5 Work Place 6D | April: Daily Rectangle
May: Daily Rectangle |
| **(9) Geometry and measurement. The student applies mathematical process standards to select and use units to describe length, area, and time. The student is expected to:** | | |
| **(9.A) find the length of objects using concrete models for standard units of length** | Unit 4 Module 1 Session 1
Unit 4 Module 1 Session 2
Unit 4 Module 1 Session 4 | April: Calendar Collector
May: Calendar Collector |
| **(9.B) describe the inverse relationship between the size of the unit and the number of units needed to equal the length of an object** | Unit 4 Module 1 Session 1
Unit 4 Module 1 Session 2
Unit 4 Module 2 Session 1 | November: Calendar Collector |
| **(9.C) represent whole numbers as distances from any given location on a number line** | Unit 3 Module 2 Session 1
Unit 3 Module 2 Session 2
Unit 3 Module 2 Session 3 | September: Computational Fluency
October: Number Line
January: Computational Fluency |
| **(9.D) determine the length of an object to the nearest marked unit using rulers, yardsticks, meter sticks, or measuring tapes** | Unit 4 Module 2 Session 1
Unit 4 Module 2 Session 5
Unit 4 Module 3 Session 5 | April: Calendar Collector
May: Calendar Collector |
| **(9.E) determine a solution to a problem involving length, including estimating lengths** | Unit 4 Module 1 Session 4
Unit 4 Module 2 Session 1 | November: Calendar Collector
April: Calendar Collector |
| **(9.F) use concrete models of square units to find the area of a rectangle by covering it with no gaps or overlaps, counting to find the total number of square units, and describing the measurement using a number and the unit** | Unit 6 Module 2 Session 3
Unit 6 Module 2 Session 4 Work Place 6B
Unit 6 Module 2 Session 4 Work Place 6C | April: Daily Rectangle
May: Daily Rectangle |
| **(9.G) read and write time to the nearest one-minute increment using analog and digital clocks and distinguish between a.m. and p.m.** | | |
| **(9.G.i) read** time to the nearest one-minute increment using analog clocks | Unit 5 Module 2 Session 4 Home Connection
Unit 5 Module 3 Session 2 Home Connection | September: Calendar Collector
Number Corner addresses time to the nearest five-minute increment. |
| **(9.G.ii) write** time to the nearest one-minute increment using analog clocks | Unit 5 Module 2 Session 4 Home Connection
Unit 5 Module 3 Session 2 Home Connection
Unit 8 Module 2 Session 3 Home Connection | Number Corner addresses time to the nearest five-minute increment. |
Texas Essential Knowledge & Skills (TEKS)
Bridges in Mathematics & Number Corner 2nd Edition

continued

<table>
<thead>
<tr>
<th>Standard, Expectation & Breakout</th>
<th>Bridges Citations</th>
<th>Number Corner Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9.G.iii) read time to the nearest one-minute increment using digital clocks</td>
<td>Unit 8 Module 2 Session 3 Home Connection</td>
<td>November: Calendar Grid: Activity 3 November: Calendar Grid: Activity 4 Number Corner addresses time to the nearest five-minute increment.</td>
</tr>
<tr>
<td>(9.G.iv) write time to the nearest one-minute increment using digital clocks</td>
<td></td>
<td>September: Calendar Collector November: Calendar Grid: Activity 3 November: Calendar Grid: Activity 4 Number Corner addresses time to the nearest five-minute increment.</td>
</tr>
<tr>
<td>(9.G.v) distinguish between a.m. and p.m.</td>
<td>Unit 2 Module 3 Session 3 Home Connection</td>
<td>September: Calendar Grid September: Calendar Collector</td>
</tr>
</tbody>
</table>

(10) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to:

(10.A) explain that the length of a bar in a bar graph or the number of pictures in a pictograph represents the number of data points for a given category

| | Unit 1 Module 1 Session 4 Unit 3 Module 4 Session 2 Unit 3 Module 4 Session 3 | December: Calendar Collector January: Calendar Grid January: Calendar Collector |

(10.B) organize a collection of data with up to four categories using pictographs and bar graphs with intervals of one or more

| (10.B.i) organize a collection of data with up to four categories using **pictographs** with intervals of one or more | December: Calendar Collector January: Calendar Grid January: Calendar Collector |
| (10.B.ii) organize a collection of data with up to four categories using **bar graphs** with intervals of one or more | Unit 7 Module 4 Session 4 Home Connection Unit 8 Module 4 Session 3 | December: Calendar Collector January: Calendar Grid January: Calendar Collector |

(10.C) write and solve one-step word problems involving addition or subtraction using data represented within pictographs and bar graphs with intervals of one

(10.C.i) write one-step word problems involving addition or subtraction using data represented within **pictographs** with intervals of one	Unit 1 Module 1 Session 4 Unit 3 Module 4 Session 3	December Calendar Collector
(10.C.ii) write one-step word problems involving addition or subtraction using data represented within **bar graphs** with intervals of one	Unit 3 Module 4 Session 3	
(10.C.iii) solve one-step word problems involving addition or subtraction using data represented within **pictographs** with intervals of one	Unit 4 Module 1 Session 3 Home Connection Unit 4 Module 2 Session 2 Home Connection	December: Calendar Collector January: Calendar Grid
(10.C.iv) solve one-step word problems involving addition or subtraction using data represented within **bar graphs** with intervals of one	Unit 7 Module 3 Session 3 Home Connection Unit 7 Module 4 Session 4 Home Connection Unit 8 Module 4 Session 3	December: Calendar Collector January: Calendar Grid January: Calendar Collector

(10.D) draw conclusions and make predictions from information in a graph

| (10.D.i) draw conclusions from information in a graph | Unit 3 Module 4 Session 2 Unit 3 Module 4 Session 3 Unit 4 Module 1 Session 3 Home Connection | December: Calendar Collector January: Calendar Grid January: Calendar Collector |
| (10.D.ii) make predictions from information in a graph | Unit 1 Module 1 Session 4 Unit 3 Module 4 Session 2 Unit 3 Module 4 Session 3 | December: Calendar Collector January: Calendar Grid January: Calendar Collector |

(11) Personal financial literacy. The student applies mathematical process standards to manage one’s financial resources effectively for lifetime financial security.

| | Not addressed | Not addressed |