Building Computational Fluency, Grade 3
A Math Learning Center Publication

by Pia Hansen Powell and Barbara Blanke
illustrated by Tyson Smith

Other Bridges Breakout Units
Building Computational Fluency, Grades 5 & 6
Building Computational Fluency, Grade 4
Building Computational Fluency, Grade 2
Building Computational Fluency, Grade 1
Bridge Design & Construction: Data Collection & Analysis
Bugs Across the Curriculum
Crossing the Pond: A Probability Game
Exploring Money: Adding, Counting, Sorting and Patterning
Exploring Time: Hours, Minutes and Paper Clocks
Frogs Across the Curriculum
Geometry: Pattern Blocks, Polydrons and Paper Quilts (Grade 1)
Geometry: Shapes, Symmetry, Area and Number (Grade 2)
Math Buckets: Sorting and Patterning
Math with a Sock: Probability and Fractions
My Little Farm: Money, Place Value and Mapping
Penguins: Measuring, Sorting, Computation and More
Sea Creatures Across the Curriculum

The Math Learning Center, PO Box 12929, Salem, Oregon 97309. Tel. 1 800 575–8130.
© 2007 by The Math Learning Center
All rights reserved.
Prepared for publication on Macintosh Desktop Publishing system.
Printed in the United States of America.

QP738 BOBCF3
P1207

The Math Learning Center grants permission to classroom teachers to reproduce blackline masters in appropriate quantities for their classroom use.

The Math Learning Center is a nonprofit organization serving the education community. Our mission is to inspire and enable individuals to discover and develop their mathematical confidence and ability. We offer innovative and standards-based professional development, curriculum, materials, and resources to support learning and teaching. To find out more, visit us at www.mathlearningcenter.org.

ISBN 97816026222067

Building Computational Fluency, Grade 3
A Math Learning Center Publication

by Pia Hansen Powell and Barbara Blanke
illustrated by Tyson Smith

Other Bridges Breakout Units
Building Computational Fluency, Grades 5 & 6
Building Computational Fluency, Grade 4
Building Computational Fluency, Grade 2
Building Computational Fluency, Grade 1
Bridge Design & Construction: Data Collection & Analysis
Bugs Across the Curriculum
Crossing the Pond: A Probability Game
Exploring Money: Adding, Counting, Sorting and Patterning
Exploring Time: Hours, Minutes and Paper Clocks
Frogs Across the Curriculum
Geometry: Pattern Blocks, Polydrons and Paper Quilts (Grade 1)
Geometry: Shapes, Symmetry, Area and Number (Grade 2)
Math Buckets: Sorting and Patterning
Math with a Sock: Probability and Fractions
My Little Farm: Money, Place Value and Mapping
Penguins: Measuring, Sorting, Computation and More
Sea Creatures Across the Curriculum

The Math Learning Center, PO Box 12929, Salem, Oregon 97309. Tel. 1 800 575–8130.
© 2007 by The Math Learning Center
All rights reserved.
Prepared for publication on Macintosh Desktop Publishing system.
Printed in the United States of America.

QP738 BOBCF3
P1207

The Math Learning Center grants permission to classroom teachers to reproduce blackline masters in appropriate quantities for their classroom use.

The Math Learning Center is a nonprofit organization serving the education community. Our mission is to inspire and enable individuals to discover and develop their mathematical confidence and ability. We offer innovative and standards-based professional development, curriculum, materials, and resources to support learning and teaching. To find out more, visit us at www.mathlearningcenter.org.

ISBN 97816026222067
Building Computational Fluency, Grade 3

Introduction
Building Computational Fluency, Grade 3 Overview 1
Section 1: Assessments 2
Section 2: Fact Fluency Supplement 3
Section 3: Support Activities 3

Section 1 Assessments
Unless otherwise indicated on the blackline, run a class set.

Assessment 1 5
Conducting Assessment 1 5
Using Information from Assessment 1 6
Assessment 1, page 1 of 2 11
Assessment 1, page 2 of 2 12
Ten-Strips 13
Assessment 2 15
Conducting Assessment 2 15
Using Information from Assessment 2 16
Assessment 2, Form A 19
Assessment 2, Form B 20
Addition Facts Class Checklist 21
Assessment 3 23
Conducting Assessment 3 23
Using Information from Assessment 3 24
Assessment 3, Form A 27
Assessment 3, Form B 28
Assessment 3, Form C 29
Subtraction Facts Class Checklist 30
Assessment 4 31
Conducting Assessment 4 31
Assessment 4, page 1 of 2 33
Assessment 4, page 2 of 2 34
Assessment 4 Class Checklist 35
Assessment 5 37
Conducting Assessment 5 37
Using Information from Assessment 5 37
Assessment 5, page 1 of 3 39
Assessment 5, page 2 of 3 40
Assessment 5, page 3 of 3 41
Assessment 5 Class Checklist 42
Base Ten Pieces, page 1 of 2 43
Base Ten Pieces, page 2 of 2 44
Section 2 Fact Fluency

Follow copy instructions on blacklines to run as needed.

Fact Fluency: Addition, Subtraction & Multiplication 63
Solving Addition Facts Booklet 65
Fact Fluency, Addition: Instructions for Solving Addition Facts Booklet 77
Solving Subtraction Facts Booklet 79
Fact Fluency, Subtraction: Instructions for Solving Subtraction Facts Booklet 91
Scout Them Out 1, Addition & Subtraction 93
Scout Them Out 2, Addition & Subtraction 94
Scout Them Out 3, Addition & Subtraction 95
Scout Them Out 4, Addition & Subtraction 96
Scout Them Out 5, Addition & Subtraction 97
Scout Them Out 6, Addition & Subtraction 98
Scout Them Out 7, Addition & Subtraction 99
Scout Them Out 8, Addition & Subtraction 100
Scout Them Out 9, Addition & Subtraction 101
Scout Them Out 10, Addition & Subtraction 102
Double It! 103
Adding & Subtracting 10 105
Cutting Numbers in Half 106
Double It or Cut It in Half 107
Leapfrog Subtraction 108
<table>
<thead>
<tr>
<th>Home Connection A, Activity: Addition Facts Challenge</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ten-Strip Fact Cards, page 1 of 4</td>
<td>113</td>
</tr>
<tr>
<td>Ten-Strip Fact Cards, page 2 of 4</td>
<td>114</td>
</tr>
<tr>
<td>Ten-Strip Fact Cards, page 3 of 4</td>
<td>115</td>
</tr>
<tr>
<td>Ten-Strip Fact Cards, page 4 of 4</td>
<td>116</td>
</tr>
<tr>
<td>Home Connection A, Worksheet: Addition & Subtraction Fact Families</td>
<td>117</td>
</tr>
<tr>
<td>Home Connection B, Worksheet: Subtraction Facts</td>
<td>119</td>
</tr>
<tr>
<td>Home Connection C, Activity: Up to Ten</td>
<td>120</td>
</tr>
<tr>
<td>Up to Ten Cards, page 1 of 3</td>
<td>122</td>
</tr>
<tr>
<td>Up to Ten Cards, page 2 of 3</td>
<td>123</td>
</tr>
<tr>
<td>Up to Ten Cards, page 3 of 3</td>
<td>124</td>
</tr>
<tr>
<td>Up to Ten Game Board</td>
<td>125</td>
</tr>
<tr>
<td>Ten-Strips</td>
<td>126</td>
</tr>
<tr>
<td>Home Connection C, Worksheet: Up to Ten</td>
<td>127</td>
</tr>
<tr>
<td>Solving Multiplication Facts Booklet</td>
<td>129</td>
</tr>
<tr>
<td>Home Connection D, Activity: Solving Multiplication Facts Booklet</td>
<td>143</td>
</tr>
<tr>
<td>Home Connection E, Worksheet: Multiplying by 2, 3, 4 & 8</td>
<td>145</td>
</tr>
<tr>
<td>Scout Them Out 2 & 5, Multiplication & Division</td>
<td>147</td>
</tr>
<tr>
<td>Scout Them Out 5 & 10, Multiplication & Division</td>
<td>148</td>
</tr>
<tr>
<td>Scout Them Out 2 & 4, Multiplication & Division</td>
<td>149</td>
</tr>
<tr>
<td>Scout Them Out 4 & 8, Multiplication & Division</td>
<td>150</td>
</tr>
<tr>
<td>Scout Them Out 5 & 6, Multiplication & Division</td>
<td>151</td>
</tr>
<tr>
<td>Scout Them Out 2 & 3, Multiplication & Division</td>
<td>152</td>
</tr>
<tr>
<td>Scout Them Out 10 & 9, Multiplication & Division</td>
<td>153</td>
</tr>
<tr>
<td>Scout Them Out 8 & Square Number Facts, Multiplication & Division</td>
<td>154</td>
</tr>
<tr>
<td>Practice 0’s, 1’s, 2’s and 3’s Multiplication & Division</td>
<td>155</td>
</tr>
<tr>
<td>Practice 2’s, 3’s, 5’s and 6’s Multiplication & Division</td>
<td>156</td>
</tr>
<tr>
<td>Practice 4’s, 5’s, 6’s and 8’s Multiplication & Division</td>
<td>157</td>
</tr>
<tr>
<td>Practice 4’s, 8’s, 9’s and 10’s Multiplication & Division</td>
<td>158</td>
</tr>
<tr>
<td>Home Connection F, Activity: Multiplication Draw</td>
<td>159</td>
</tr>
<tr>
<td>Multiplication Draw Cards, page 1 of 3</td>
<td>161</td>
</tr>
<tr>
<td>Multiplication Draw Cards, page 2 of 3</td>
<td>162</td>
</tr>
<tr>
<td>Multiplication Draw Cards, page 3 of 3</td>
<td>163</td>
</tr>
<tr>
<td>Home Connection G, Worksheet: Multiplying by 5, 6, 9 & 10</td>
<td>165</td>
</tr>
<tr>
<td>Home Connection H, Worksheet: Quick Facts Multiplication</td>
<td>167</td>
</tr>
</tbody>
</table>

Section 3: Support Activities

Follow copy instructions on blacklines to run as needed.

Support Activities Grouped by Skill

S 1.1 Support Activity 1, Doubles Spin, Instructional Considerations
S 1.2 Support Activity 1, Doubles Spin, Instructions
S 1.3 Doubles Spin & Make Half Game Board: page 1
S 1.4 Doubles Spin & Make Half Game Board: page 2
S 1.5 Doubles & Halves Spinner
S 1.6 Ten-Strips
S 1.7 The Ten-Strips Model
S 1.8 Addition Strategies
S 2.1 Support Activity 2, Spinning Around Addition, Instructional Considerations
S 2.2 Support Activity 2, Spinning Around Addition, Instructions
S 2.3 Support Activity 2, Spinning Around Addition, Instructions (cont.)
S 2.4 Spinning Around Addition Record Sheet
S 2.5 Spinning Around Addition Spinner
S 3.1 Support Activity 3, Triple Spin & Add, Instructional Considerations
S 3.2 Support Activity 3, Triple Spin & Add, Instructions
S 3.3 Support Activity 3, Triple Spin & Add, Instructions (cont.)
S 3.4 Triple Spin & Add Record Sheet
S 3.5 Triple Spin & Add Spinner
S 4.1 Support Activity 4, Sorting Addition Facts, Instructional Considerations
S 4.2 Support Activity 4, Sorting Addition Facts, Instructions
S 4.3 Addition Strategy Labels
S 4.4 Ten-Strip Fact Cards: page 1 of 5
S 4.5 Ten-Strip Fact Cards: page 2 of 5
S 4.6 Ten-Strip Fact Cards: page 3 of 5
S 4.7 Ten-Strip Fact Cards: page 4 of 5
S 4.8 Ten-Strip Fact Cards: page 5 of 5
S 5.1 Support Activity 5, Make Half, Instructional Considerations
S 5.2 Support Activity 5, Make Half, Instructions
S 6.1 Support Activity 6, Spinning Around Subtraction, Instructional Considerations
S 6.2 Support Activity 6, Spinning Around Subtraction, Instructional Considerations (cont.)
S 6.3 Support Activity 6, Spinning Around Subtraction, Instructions
S 6.4 Support Activity 6, Spinning Around Subtraction, Instructions (cont.)
S 6.5 Spinning Around Subtraction Spinner
S 6.6 Spinning Around Subtraction Record Sheet
S 7.1 Support Activity 7, Make 100, Instructional Considerations
S 7.2 Support Activity 7, Make 100, Instructions
S 7.3 Support Activity 7, Make 100, Instructions (cont.)
S 7.4 Make 100 Record Sheet
S 7.5 Make 100 Cards: page 1 of 3
S 7.6 Make 100 Cards: page 2 of 3
S 7.7 Make 100 Cards: page 3 of 3
S 8.1 Support Activity 8, Race to 100 & Back, Instructional Considerations
S 8.2 Support Activity 8, Race to 100 & Back, Instructional Considerations (cont.)
S 8.3 Support Activity 8, Race to 100 & Back, Instructions
S 8.4 Support Activity 8, Race to 100 & Back, Instructions (cont.)
S 8.5 Race to 100 & Back Spinner
S 8.6 Base Ten Pieces: page 1 of 2
S 8.7 Base Ten Pieces: page 2 of 2
S 9.1 Support Activity 9, Three Turns to Win, Instructional Considerations
S 9.2 Support Activity 9, Three Turns to Win, Instructions
S 9.3 Three Turns to Win Game Board
S 9.4 Money Value Pieces: page 1 of 3
S 9.5 Money Value Pieces: page 2 of 3
S 9.6 Money Value Pieces: page 3 of 3
S 10.1 Support Activity 10, Finish with $4, Instructional Considerations
S 10.2 Support Activity 10, Finish with $4, Instructions
S 10.3 Finish with $4 Game Board: page 1 of 2
S 10.4 Finish with $4 Game Board: page 2 of 2
S 11.1 Support Activity 11, Count Down 400, Instructional Considerations
S 11.2 Support Activity 11, Count Down 400, Instructions
S 11.3 Count Down 400
S 11.4 Count Down 400 Spinner
S 12.1 Support Activity 12, Faces of a Solid, Instructional Considerations
S 12.2 Support Activity 12, Faces of a Solid, Instructions
S 12.3 Faces Spinner
S 12.4 Solids Cards
S 13.1 Support Activity 13, Spinning Around Multiplication, Instructional Considerations
S 13.2 Support Activity 13, Spinning Around Multiplication, Instructional Considerations (cont.)
S 13.3 Support Activity 13, Spinning Around Multiplication, Instructions
S 13.4 Spinning Around Multiplication Spinner
S 13.5 Spinning Around Multiplication Record Sheet
S 13.6 Grid Paper
S 14.1 Support Activity 14, Show the Sum, Instructional Considerations
S 14.2 Support Activity 14, Show the Sum, Instructions
S 14.3 Show the Sum Record Sheet
S 15.1 Support Activity 15, Show the Difference, Instructional Considerations
S 15.2 Support Activity 15, Show the Difference, Instructions
S 15.3 Show the Difference Record Sheet
S 16.1 Support Activity 16, What’s Missing? Bingo, Instructional Considerations
S 16.2 Support Activity 16, What’s Missing? Bingo, Instructional Considerations (cont.)
S 16.3 Support Activity 16, What’s Missing? Bingo, Instructions
S 16.4 What’s Missing? Bingo Cards: page 1 of 2
S 16.5 What’s Missing? Bingo Cards: page 2 of 2
S 16.6 What’s Missing? Bingo Boards
S 17.1 Support Activity 17, Ten to Win, Instructional Considerations
S 17.2 Support Activity 17, Ten to Win, Instructions
S 17.3 Support Activity 17, Ten to Win, Instructions (cont.)
S 17.4 Ten to Win Spinner
S 17.5 Ten to Win Game Boards
S 17.6 Small Number Charts
S 18.1 Support Activity 18, Make Zero, Instructional Considerations
S 18.2 Support Activity 18, Make Zero, Instructions
S 18.3 Make Zero Spinner
S 18.4 Make Zero Record Sheet
Building Computational Fluency, Grade 3 Overview

Building Computational Fluency, Grade 3 is a supplement designed to provide you with powerful and flexible tools to assess and support students in developing key computational skills and concepts. Organized into three sections, this supplement enables you to assess some or all of your students on computational skills throughout the school year and provide support to students who need extra help in key areas, including:

- building fluency with addition and subtraction facts to 20
- adding and subtracting multi-digit numbers with and without regrouping
- estimating the results of adding and subtracting 2- and 3-digit numbers
- computing with money
- using words, pictures, visual models, and numbers to represent multiplication
- using models, words, and/or numbers to demonstrate an understanding of multiplication as repeated addition, equal groups of objects, arrays, or skip counting
- developing and applying strategies for multiplication facts through 10 × 10
- developing an understanding of the relationship between multiplication and division
- exploring division facts through 100 ÷ 10

In Section 1, you'll find a set of assessments designed to be administered at key points throughout the school year. These assessments serve as a useful complement to any third grade math program, and may also be helpful to fourth grade teachers seeking to diagnose specific skill deficits among students working below grade level. They also provide tools to check students' proficiency with basic addition, subtraction, and multiplication facts on a regular basis. In Section 2, you'll find a Fact Fluency Supplement that provides the kind of systematic, strategy-based practice students need to master basic addition, subtraction, and multiplication facts. The strategy booklets, worksheets, and take-home activities in this section can be used with selected students or with your entire class. Section 3 is a collection of Support Activities designed to help students who indicate needs in the specific areas assessed. The games in this section are based around visual models and strategies, and help students develop deep conceptual understandings as well as proficiency. They can be used as instructional resources with your entire group, or as tools to remediate targeted students. Each section is described in more detail on the following pages.
Section 1 Assessments

The eight assessments in this collection are designed to help you gauge how your students are doing with key computational skills throughout the year. Assessment 1 is a constructed response piece in which students solve addition and subtraction story problems using pictures, numbers, and/or words. This assessment gives you information about students’ number sense, their understanding of whole number operations, and how they use computation strategies to solve problems. It is intended for use at the beginning of the school year, although you can use it any time that best suits your instructional needs.

Assessments 2, 3, and 6 are written tests of students’ fluency with addition, subtraction, and multiplication facts. The first two are designed to be administered early in the school year, and the third can be given sometime in the middle of the year to provide baseline measures of students’ fact fluency. You can re-administer each assessment periodically to gauge students’ development through the school year. Alternate test forms and class checklists are provided with each of these assessments to help you track students’ progress. You’ll find a set of fact strategy booklets, worksheets, and take-home activities in the third section of this packet designed to provide students with opportunities to learn and practice addition, subtraction, and multiplication strategies.

Assessments 4, 5, 7 and 8 are quarterly written checkups designed for use at the end of each grading period to support teachers in conferencing with parents and reporting on students’ progress. Each of these assessments offers another look at students’ proficiency with basic facts and a host of other key math skills typically taught in the fall, winter, and spring of the third grade year. These assessments may also be useful to resource room teachers and others working with below-grade-level fourth graders.
Section 2 Fact Fluency

The Fact Fluency section is designed to be used in conjunction with the assessments in this packet, but also stands alone as a set of materials that can be used to supplement any third grade math program. This section includes 3 illustrated fact strategy booklets to be used with students at school or home, 48 pages of strategy-related fact practice, and several take-home sheets and activities.

Section 3 Support Activities

In the third section of this packet, you’ll find a set of 18 partner or small group games specifically designed to support the skills tested in the assessments described above. These games provide engaging practice with skills including addition, subtraction, and multiplication fact strategies; multi-digit addition and subtraction with and without regrouping; and computation with money. Most of these games are based around visual models such as ten strips, base 10 pieces,
money value pieces, and hundreds grids, and are intended to help students develop conceptual understanding as well as proficiency.

Support Activity 17

Ten to Win

You’ll need

• Ten to Win Spinner (Blackline S 17.4, 1 copy cut in half for every 2 pairs of players)
• Ten to Win Game Boards (Blackline S 17.5, a few copies for each pair of players run back-to-back)
• Small Number Charts (Blackline S 17.6, a few copies run back-to-back per player)
• Pencil and paperclip to use as a spinner (1 set for each pair of players)
• 10 red or 10 blue game markers or 10 each of two different kinds of beans, cereal pieces, or coins to use as game markers (optional)

Instructions for Ten to Win

1 If you want to re-use the game board, get 10 each of two different color game markers and assign one color to each player. (If you’re playing at home, you can use 2 different kinds of cereal or beans as markers.) You can fill in the spaces on the game board with pencils or crayons instead of using game markers. You do, you will not be able to reuse the game board.

2 Players take turns spinning both spinners and multiplying the two numbers, finds the product on the same game board, and covers it with a game marker or marks it with his or her color. If that product is already covered, the player loses his or her turn.

3 When the next player spins the spinners, he or she multiplies the two numbers, finds the product on the same game board, and covers it with a game marker or marks it with his or her color. If that product is already covered, the player loses his or her turn.

4 If a player gets stumped, he or she can draw the array on a small Number Chart to find the product.

5 Players take turns until one player has covered 10 products to win the game.

Although the Support Activities have been designed to complement the assessments in this packet, you can use them as a set of additional instruction resources for your classroom even if you choose not to conduct the assessments. The activities can be used by educational assistants, parent volunteers, resource or title teachers, and classroom teachers. Many of them also make effective homework assignments.

Each activity includes:

• instructional considerations
• playing instructions
• blacklines for game components if needed (spinners, gameboards, and/or cards)
• record sheet blacklines if needed
Assessment 1

Overview
Students solve addition and subtraction story problem using pictures, numbers and/or words. This information is used to assess students’ strengths with basic computation in the context of word problems.

Skills & Concepts
★ solving addition and subtraction problems using models and strategies
★ identifying and applying the operation needed for solving a problem

Timing
Early September or any other time of the year that’s appropriate for your students

You’ll need
★ Assessment 1, pages 1 and 2 (pages 11 and 12, class set plus 1 copy of page 11 on a transparency)
★ Ten-Strips (page 13, class set)
★ game markers or other small counters, 20 per student

Conducting Assessment 1
Having students write about their mathematical thinking provides a learning opportunity for them and an assessment opportunity for you. The process of communicating with pictures, numbers, and/or words requires them to organize and clarify their thoughts and gives you valuable information about what they understand and can do. In this constructed response assessment, you’ll see if students can make sense of a mathematical idea and then present their knowledge effectively using some combination of pictures, numbers, and words.

To introduce the assessment, display the overhead copy you made of the first sheet and give each student a copy of both pages. Read the directions and story problems on the overhead out loud, and ask students to follow along on their papers. Make sure everyone understands that they should select one of the two problems, make an X beside it, and then solve the problem in the space provided. Invite students to circle the words on the sheet that tell them what they need to do (choose and solve). You’ll want to model this on the overhead.
Assessment 1 (cont.)

You’ll also want to discuss how students might select which problem to solve. Encourage them to choose the problem that is just right for them, not too easy and not too hard. Let students know that they’ll do the same thing on the second sheet as well. Also let them know they can show their work using whatever combination of pictures, numbers, and words is most comfortable for them.

Before they begin working, tell students that although you often encourage them to work with others, you’d like everyone to work independently on this task. Let them know, however, that you’ll be available to reread the questions for anyone who’d like to hear them again.

Ask students to begin by writing their name and today’s date at the tops of both pages. As they work, circulate around the room. Feel free to reread the directions or word problems for students who need assistance, keeping in mind that you’re not assessing their reading levels. When they have finished their work, ask them to look it over one more time. Did they show their thinking in a clear way so that someone else could follow along?

Using Information from Assessment 1

Open-ended prompts provide all students with access to the assessment, and as a result each child is able to show what she or he knows about the topic at hand. Students select the prompt they feel is at their independent level—not too hard but not too easy. Offering a choice also motivates students to do their best work.

In addition to choosing the question, we want students to choose their preferred modes of communicating mathematical ideas. Some students will draw pictures to show their thinking. Others may choose to write number sentences, and still others may choose to write a few sentences, a step-by-step explanation of what they did to find the solution to the problem. All three ways are encouraged in a constructed response assessment.

The ways in which each student has chosen to express his or her thinking will provide you with insights about his or her learning preferences. If a stu-
Building Computational Fluency

Assessment 1 (cont.)

dent chooses to draw a picture to solve the problem, he may prefer to learn new content through visual models and manipulatives. If a student writes a paragraph about the process, he may prefer to learn new content through discussions, story problems, and literature connections. If a student chooses to record number sentences to show her thinking symbolically, she may prefer to learn new mathematical content with symbols and equations.

This assessment will give you valuable information about students' number sense, their understanding of whole number operations, and how they use computation strategies to solve problems. We recommend that you share students’ responses with their families during conferences and/or keep them as portfolio pieces.

Scoring Student Work

The student work samples that follow are representative of what you might expect at the novice, basic, proficient, and advanced levels.

<table>
<thead>
<tr>
<th>SCORING RUBRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4—Advanced</td>
</tr>
<tr>
<td>Understanding of the problem</td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>Presentation</td>
</tr>
</tbody>
</table>

Level One—Novice

Andre chose the more challenging addition problem. He drew 10 sticks to represent the 10 and 5 dots to show the 5 in 15. Then he drew 9 sticks and 8 dots for the 18 pencils. As a result, his final answer of 32 was off by 1, and he had no other way of double-checking this result for accuracy. Andre chose the easier subtraction problem and assumed it was an addition problem as well. He added 7 and 15 inaccurately to make the sum 23. His confusion about tens and ones, and the meaning of the difference model for subtraction, are areas of concern. Andre is working at the novice level.
Level Two—Basic
Maggie chose to make a detailed, literal drawing of Max’s 5 pencils and the 8 more his mom gave him. Then she counted them one by one. When Maggie solved the difference problem, she drew 7 sticks for Max and then 15 for his sister. In the set of 15 sticks, she drew a vertical line after 7 to show Max’s set of 7 pencils and then counted the remaining sticks to 15. This shows that she understands the model for a difference problem. Her work is very well organized and easy to follow, and she also writes complete sentences to communicate her answers. Maggie’s dependency on one-by-one counting for these simple problems is a concern, although she accurately solves addition and subtraction problems using pictures and words. Maggie is working at the basic level.

Level Three—Proficient
Rosa chose the more challenging addition problem and the easier subtraction problem in this assessment. This is typical of many third grade students at the beginning of the year. She used the traditional algorithm and also showed her ability to double check her work by chunking 15 + 15. Rosa drew tallies to show the number sets in pictures as well. Rosa tried to use the algorithm for the subtraction problem but crossed it out when she couldn’t make sense of what to do. Then she drew 7 tallies and used addition to count up to 15 tallies. She correctly identified the difference as 8 and recorded her answer un-
under the vertical notation. Rosa prefers to show her thinking in numbers and tallies. Her work is at a proficient level for early third grade.

Choose one of the two story problems below. Put an X beside the one you choose.

- Max had 5 pencils. His mom gave him 8 more. How many pencils does Max have altogether?
- Max had 15 pencils. His mom gave him 18 more. How many pencils does Max have altogether?

Solve the story problem in the space below. Use pictures, numbers, and/or words to show your thinking.

Rosa

Level Four—Advanced

Advanced students may go beyond what has been covered in class by selecting a challenging problem, making new connections, or honing their communication skills in pictures, numbers, and/or words. Emma's favorite language is words. She has decided that you must begin adding on the right side first, or you might get the wrong answer. Emma uses the traditional algorithm to find the total. Interestingly enough, when she computed the difference for the subtraction problem, she used addition. Her use of tally marks to show 14 pencils shows how she counted to find the difference. She double-checked her work by using the addition algorithm and confidently reported that 14 is the answer.

Choose one of the two story problems below. Put an X beside the one you choose.

- Max has 7 pencils. His sister has 15 pencils. How many more pencils does she have than Max?
- Max has 17 pencils. His sister has 31 pencils. How many more pencils does she have than Max?

Solve the story problem in the space below. Use pictures, numbers, and/or words to show your thinking.

Rosa

A Note about Interviewing Students

If a student has written something that doesn't make sense to you, try to make time for him to explain orally what he wrote. Sometimes spelling gets in the way, and other times, students surprise us by making connections that are way beyond our own thinking or what we expected of them.
In Maria’s work below, she drew a picture of Max and his mom, but did not identify the sum.

When we interviewed her, we asked her how many pencils Max had altogether, and she replied, “It’s 13.” When asked how she knew that the total was 13, she volunteered that she turned the numbers around because 5 + 8 is the same as 8 + 5, and then tapped her foot 5 times to count up to 13. Although we want her to move away from one-by-one counting, we can see that Maria understands the commutative property of addition, a big idea that’s key to computational fluency. She also understands that it is more efficient to begin counting on from the larger number (8).

When asked how another person would know her answer, Maria said, “Oh, I’ll write 13 pencils now,” and she did (see her work above). Maria knew the answer but did not completely communicate her thinking in writing. By interviewing students like Maria, you can encourage them to correct their work and find out what they really know and can do.
Assessment 1 page 1 of 2

1 Choose one of the two story problems below. Put an X beside the one you choose.

_____ Max had 5 pencils. His mom gave him 8 more.
How many pencils does Max have altogether?

_____ Max had 15 pencils. His mom gave him 18 more.
How many pencils does Max have altogether?

2 Solve the story problem in the space below. Use pictures, numbers, and/or words to show your thinking.
3 Choose one of the two story problems below. Put an X beside the one you choose.

_____ Max has 7 pencils. His sister has 15 pencils.
 How many more pencils does she have than Max?

_____ Max has 17 pencils. His sister has 31 pencils.
 How many more pencils does she have than Max?

4 Solve the story problem in the space below. Use pictures, numbers, and/or words to show your thinking.
Ten-Strips
Assessment 2

Overview
Students are given up to 3 minutes to take a 30-problem addition facts test, working with sums to 20.

Skills & Concepts
★ fluency with addition facts to 20

Timing
Early and late fall

You’ll need
★ Assessment 2, Form A (page 19, class set)
★ Assessment 2, Form B (page 20, class set, save for use later in the fall)
★ Addition Facts Class Checklist (page 21, 1 copy, optional)
★ clock or watch with a second hand

Some Thoughts on Timed Testing
We don’t advocate the practice of timed testing for instructional purposes. Daily timed practice with random collections of problems is not productive to the development of computational fluency. Students typically continue to reinforce bad habits (e.g., counting on their fingers) when they are under pressure, and many develop a negative disposition towards mathematics because they cannot compete with their peers or can’t work fast enough.

We suggest that you use information from timed tests to guide your instruction, not to generate grades. To meet your students’ needs, you’ll need information about which facts each child knows and which strategies need to be developed conceptually with explicit practice, number relationship experiences, and word problems. As their number sense and use of strategies are developed, students will become more accurate, flexible, and efficient. When you make time to share the results with students, they will see evidence of their own growth.

Conducting Assessment 2
This assessment will give you some sense of your students’ current fluency with addition facts to 20. A student is considered to be fluent if he or she can complete 30 problems in a minute and a half: about 3 seconds per problem. A few students may be able to complete 30 problems in less than 1 minute.

Give each student a copy of Assessment 2. Take a moment to preview the types of problems on the page. Ask volunteers to point out an example of a zero fact, a counting on fact (plus-1, -2, -3), a doubles fact, and a neighbors (doubles plus-1) fact. This preview is very important, because we always want our students to be aware of the strategies they can use to determine the sums they do not automatically recall.
Ask students to write their names and the date at the top of the page. Explain that they’ll have 3 minutes to complete as much of the page as possible. Let them know that they’ll have to work quickly and that they may want to skip around to facts they know and then come back to the ones that are challenging. Remind them that when they’ve finished, they should wait quietly until everyone else has finished too.

Let students know when they can begin. (They will all need to begin at the same time.) You’ll have to watch the clock as they go, so pick a starting point that’s easy to remember, like when the second hand is on the 12 or the 6. Record the elapsed time in increments of 10 seconds on either the whiteboard or overhead; recording the times on the overhead allows you to watch how students are working (e.g., on their fingers, tapping their feet, etc.). When students are done, they can look at the board or overhead and record the elapsed time in minutes and seconds on their page.

When the last student has finished, or 3 minutes have gone by, collect all their papers. Check students’ work later for accuracy and share the results with students as needed. Use this information to set reasonable goals that will help your students achieve fluency.

Using Information from Assessment 2

As you look over students’ work, you may want to use the Addition Facts Class Checklist to record notes about what kinds of facts students have mastered and which ones remain challenging. The results will help you monitor their growth so far this year and plan your instruction to meet their evolving needs. Run a copy of the Solving Addition Facts Booklet on pages 65–76 if you need to review the different kinds of facts listed on this checklist.

Note: You may notice that some third graders occasionally write a numeral backwards. Don’t deduct points for this, but it would be a good idea to practice number writing with those students at a later time.
Here are some things you’ll want to think about as you look over each student’s work:

1. Time How much time did it take the child to complete the sheet? If she didn’t finish the sheet, how much of it was she able to complete?

Quick, competitive students may memorize the sums and retrieve them quickly without understanding the relationships between numbers well enough to double-check their answers in a flexible way. You may not be able to tell which students are working this way based only on this assessment.

2. Approach What was the child’s approach to completing the problems? Did he complete the ones he knew first and then come back to those that were challenging? Did he complete them in order from left to right or top to bottom, or was his approach random?

If a child is completing facts in order from left to right or top to bottom, it’s possible that child has command of all the addition facts and doesn’t identify any as particularly easy or difficult. However, if the first several rows are nearly complete, but last row or two haven’t been attempted, it could be that the student doesn’t understand the idea of skipping around to get more problems finished or doesn’t find any of the facts easier than the others. Children who are still counting on with fingers or dots for each problem may have this style.

3. Completed Facts Which facts did the child complete? Did she complete all the zero facts, counting on for plus one and two, doubles, and neighbors? Which kinds of facts seem more challenging for her than others?

The facts that are completed accurately are generally comfortable for the student and can be used as a teaching starting point: you’ll want to work from the child’s strengths toward new or more challenging facts (e.g., using doubles to master neighbors).

As you look over the students’ work as a group, you’ll want to identify:
- students who have demonstrated computational fluency by completing all 30 problems in under a minute and a half, with only 1 or 2 errors,
- students who have completed 30 problems in about 3 minutes with more than 2 errors, usually on neighbors, fast tens, and fast nines,
- and students who are unfamiliar with addition computation strategies and needed more than 3 minutes to complete the problems and/or have multiple errors.
After reviewing students' responses to the items on this checkup, you can assign Support Activities for children to work on at school or at home. Although there are 18 Support Activities in the third section of this packet, the ones listed below are particularly relevant to the items you just tested.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 1</td>
<td>Doubles Spin</td>
<td>Basic Addition Facts: Doubles</td>
</tr>
<tr>
<td>Activity 2</td>
<td>Spinning Around Addition</td>
<td>Strategies for Basic Addition</td>
</tr>
<tr>
<td>Activity 3</td>
<td>Triple Spin & Add</td>
<td>Basic Addition with Multiple Addends</td>
</tr>
<tr>
<td>Activity 4</td>
<td>Sorting Addition Facts</td>
<td>Strategies for Addition Facts</td>
</tr>
</tbody>
</table>

You may also want to use some of the worksheets in the Fact Fluency section (pages 63–170) to help support students who need more work with addition facts.
Assessment 2, Form A

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+3</td>
<td>+8</td>
<td>+0</td>
<td>+1</td>
<td>+4</td>
<td>+7</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>+4</td>
<td>+5</td>
<td>+8</td>
<td>+2</td>
<td>+2</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>+10</td>
<td>+9</td>
<td>+3</td>
<td>+3</td>
<td>+5</td>
<td>+5</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>+7</td>
<td>+7</td>
<td>+2</td>
<td>+3</td>
<td>+3</td>
<td>+4</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>+5</td>
<td>+6</td>
<td>+8</td>
<td>+3</td>
<td>+8</td>
<td>+4</td>
<td></td>
</tr>
</tbody>
</table>

© The Math Learning Center
Assessment 2, Form B

8 3 10 9 7 2
+1 +7 +5 +9 +7 +5

4 9 5 3 8 0
+4 +7 +6 +5 +4 +1

9 10 2 4 7 10
+6 +8 +7 +9 +5 +6

9 8 9 1 4 6
+2 +9 +6 +4 +7 +6

4 3 8 0 9 4
+6 +4 +1 +6 +5 +5
Addition Facts Class Checklist

<table>
<thead>
<tr>
<th>Student Names</th>
<th>Zero Facts (+0)</th>
<th>Counting On (+1, +2, +3)</th>
<th>Doubles (e.g., 6 + 6)</th>
<th>Neighbors (e.g., 6 + 7)</th>
<th>Make Ten Facts (=10)</th>
<th>Fast Tens (+10)</th>
<th>Fast Nines (+9)</th>
<th>Leftover Facts</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Assessment 3

Overview
Students are given 3 minutes to complete a 30-problem subtraction fluency checkup.

Skills & Concepts
- using strategies to demonstrate fluency with subtraction facts with minuends to 20
- using the relationship between addition and subtraction to solve problems

Timing
Early fall, late fall, and a third time in the winter

You’ll need
- Assessment 3, Form A (page 27, class set)
- Assessment 3, Form B (page 28, class set, save for use later in the fall)
- Assessment 3, Form C (page 29, class set, save for use in the winter)
- Subtraction Facts Class Checklist (page 30, 1 copy)
- clock or watch with a second hand

Conducting Assessment 3

Give each student a copy of Assessment 3, and take a few minutes to review the kinds of problems on the page. Ask them to find an example of a half fact (12 – 6), a doubles fact (12 – 12), a neighbors fact (17 – 16), a take away tens fact (14 – 10), and a run away ones fact (17 – 7). Identifying a few facts before they begin helps remind students that they have strategies for solving these facts.

Remind students that they can skip around and do the problems that are easiest for them first and then come back to those that are more challenging. Let them know that they’ll have up to 3 minutes to work on the problems, and then tell them when to begin. You’ll have to watch the clock as they go, so pick a starting point that’s easy to remember, like when the second hand is on the 12 or the 6. Record the elapsed time in increments of 10 seconds on either the whiteboard or overhead; recording the times on the overhead allows you to watch how students are working. When students are done, they can look at the board or overhead and record the elapsed time in minutes and seconds on their page.

When the last student has finished or 3 minutes have gone by, collect all their papers. You’ll want to check them later for accuracy and record some notes about which strategies students have mastered and which ones still present a challenge.
Using Information from Assessment 3

As you look over students’ work, you may want to use the Subtraction Facts Checklist to record notes about what kinds of facts students have mastered and which ones remain challenging. The results will help you monitor their growth and plan your instruction to best meet their current needs. Run a copy of the Solving Subtraction Facts Booklet on pages 79–90 if you need to review the kinds of facts listed on this checklist.

1. **Time** How much time did it take the child to complete the sheet? If he didn't finish the sheet, how much of it was he able to complete? Students who can complete the sheet in a minute and a half or less (no more than 3 seconds per fact) are considered to have achieved mastery.

2. **Approach** What was the child’s approach to completing the problems? Did she complete the ones she knew first and then come back to those that were challenging? Did she complete them in order from left to right or top to bottom, or was her approach random?

3. **Completed Facts** Which facts did the child complete? Did he complete all the zero, counting back, half, or doubles facts? Which kinds of facts seem more challenging than others? The up to ten and leftover subtraction facts are likely to be the most difficult for most students. Some third graders also begin to confuse the relationships 0 and 1 have in addition, subtraction, multiplication, and division. You may need to review these facts periodically.

In looking over their work as a group, you'll want to identify:
- students who are computationally fluent and have completed all 30 problems with only 1 or 2 errors in under a minute and a half,
- students who have completed 30 problems in about 3 minutes with minor errors, usually facts with differences between 10 and 20,
- and students who are unfamiliar with subtraction computation strategies and needed more than 3 minutes to complete the problems and/or have multiple errors.

To get more information, you may find that it’s helpful to interview students who seem to be lagging behind with their subtraction facts.

Teacher Omar, can you tell me how you would solve the problem 12 minus 8?

Omar I count 8, 9, 10, 11, 12. (Omar uses his fingers to count starting with 8.) The answer is 5.

Omar’s answer is 1 away from the correct difference, because he is using his fingers to count the numbers themselves rather than the number of “jumps” it takes to get from 8 to 12.
Teacher Okay, how many from 8 to 12? So it sounds like you’re starting at 8. Can you put out 8 tile first?

Omar Yeah, I’m starting at 8 and then going to 12. So here’s 8.

Teacher So now what would you do to get to 12?

Omar Well, I want to get to 12. So I can add more.

Teacher Can you use another color tile to get to 12? That way it will be easy to see what you had to add to 8 to get to 12.

Omar It’s easy to see. It’s 4. Hmm, how did I get 5 before?

Teacher When you told me, I remember you went like this 8, 9, 10, 11, 12. (Counting on her fingers.)

Omar Oh! I counted that last tile on the 8. 8, 9, 10, 11, 12. I should have started counting at 9.

Sometimes just a brief interview can clarify students' misconceptions and errors.

SUPPORT ACTIVITIES

After reviewing students' responses to the items on this checkup, you can assign Support Activities for children to work on at school or at home. Although there are 18 Support Activities in the third section of this packet, the ones listed below are particularly relevant to the items you just tested.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 5</td>
<td>Make Half</td>
<td>Basic Subtraction Facts: Half Facts</td>
</tr>
<tr>
<td>Activity 6</td>
<td>Spinning Around Subtraction</td>
<td>Strategies for Basic Subtraction</td>
</tr>
</tbody>
</table>

You may also want to use some of the worksheets in the Fact Fluency section (pages 63–170) to help support students who need more work with subtraction facts.
Assessment 3, Form A

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>14</td>
<td>9</td>
<td>4</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0</td>
<td>-0</td>
<td>-0</td>
<td>-0</td>
<td>-0</td>
<td>-1</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-3</td>
<td>-3</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>4</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>-9</td>
<td>-15</td>
<td>-14</td>
<td>-2</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>-7</td>
<td>-5</td>
<td>-6</td>
<td>-4</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>18</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>-9</td>
<td>-10</td>
<td>-9</td>
<td>-10</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment 3, Form B

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>18</td>
<td>20</td>
<td>15</td>
<td>18</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>-8</td>
<td>-10</td>
<td>-6</td>
<td>-1</td>
<td>-9</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>-9</td>
<td>0</td>
<td>-3</td>
<td>-4</td>
<td>-2</td>
<td>-7</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>10</td>
<td>18</td>
<td>13</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>-5</td>
<td>-6</td>
<td>-9</td>
<td>-9</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>16</td>
<td>13</td>
<td>10</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>-2</td>
<td>-10</td>
<td>-5</td>
<td>-7</td>
<td>-6</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>18</td>
<td>9</td>
<td>7</td>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-4</td>
<td>-7</td>
<td>-2</td>
<td>-5</td>
<td>-8</td>
<td></td>
</tr>
</tbody>
</table>
Assessment 3, Form C

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>12</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>-0</td>
<td>-3</td>
<td>-7</td>
<td>-8</td>
<td>-9</td>
<td>-6</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>11</td>
<td>13</td>
<td>19</td>
<td>9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>-10</td>
<td>-6</td>
<td>-12</td>
<td>-3</td>
<td>-5</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>10</td>
<td>17</td>
<td>16</td>
<td>13</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>-4</td>
<td>-10</td>
<td>-9</td>
<td>-11</td>
<td>-7</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>10</td>
<td>18</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>-5</td>
<td>-4</td>
<td>-0</td>
<td>-12</td>
<td>-13</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-9</td>
<td>-8</td>
<td>-14</td>
<td>-15</td>
<td>-7</td>
<td></td>
</tr>
</tbody>
</table>
Subtraction Facts Class Checklist

<table>
<thead>
<tr>
<th>Student Names</th>
<th>Zero Facts (-0)</th>
<th>Counting Back (-1, -2, -3)</th>
<th>Doubles (e.g., 4 - 4 = 0)</th>
<th>Neighbors (e.g., 5 - 4 = 1, 5 - 3 = 2)</th>
<th>Half Facts (e.g., 4 - 2 = 2)</th>
<th>Take Away Tens (-10)</th>
<th>Run Away Ones (e.g., 16 - 6 = 10)</th>
<th>Up to 10 (e.g., 15 - 8 = 7)</th>
<th>Leftovers</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Assessment 4

Overview
This assessment can be used to test key math skills toward the end of the first reporting period.

Timing
Toward the end of your first reporting period (late October/early November)

Skills & Concepts
★ demonstrating fluency with addition and subtraction facts with sums and minuends to 20
★ extending numeric patterns
★ selecting the most appropriate tool to measure a specified item
★ determining elapsed time in minutes

You’ll need
★ Assessment 4, pages 1 and 2 (pages 33 and 34, class set)
★ Assessment 4 Class Checklist (page 35, Run as many copies as you need to record the results for your whole class.)
★ Ten-Strips (page 13, class set)
★ real or plastic coins available
★ student clocks available

Conducting Assessment 4
This assessment focuses on basic addition and subtraction facts; counting mixed coins by 1’s, 5’s, 10’s, and 25’s; measuring tools and units; number patterns; and telling time to the minute. Make ten-strips, money kits, and student clocks available while students work on this checkup.

You can use the checklist provided to keep track of your students’ performance on each item on the assessment.

SUPPORT ACTIVITIES
After reviewing students’ responses to the items on this assessment, you can assign Support Activities for children to work on at school or at home. Although there are 18 Support Activities in the third section of this packet, the ones listed below are particularly relevant to the items you just tested.
Assessment 4 (cont.)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 1</td>
<td>Doubles Spin</td>
<td>Basic Addition Facts: Doubles</td>
</tr>
<tr>
<td>Activity 2</td>
<td>Spinning Around Addition</td>
<td>Strategies for Basic Addition</td>
</tr>
<tr>
<td>Activity 3</td>
<td>Triple Spin & Add</td>
<td>Basic Addition with Multiple Addends</td>
</tr>
<tr>
<td>Activity 4</td>
<td>Sorting Addition Facts</td>
<td>Strategies for Addition Facts</td>
</tr>
<tr>
<td>Activity 5</td>
<td>Make Half</td>
<td>Basic Subtraction Facts: Half Facts</td>
</tr>
<tr>
<td>Activity 6</td>
<td>Spinning Around Subtraction</td>
<td>Strategies for Basic Subtraction</td>
</tr>
</tbody>
</table>

We recommend creating a packet that contains the instructions, instructional considerations, and materials for these Support Activities. That way, you can simply provide a helper or instructional assistant with the packet and assign specific activities in the packet for children who need extended practice. If you'd like to send an activity home with a child in need of more practice, simply run a copy of the instructions and materials.
1 Find the sums below.

\[
\begin{array}{cccccccc}
9 & 10 & 7 & 4 & 5 & 6 & 7 & 8 \\
+ & 8 & + & 4 & + & 7 & + & 6 \\
\hline
+ & 6 & + & 9 & + & 6 & + & 3 \\
\hline
+ & 3 & + & 8
\end{array}
\]

6 + 7 = ___
8 + 10 = ___
7 + 9 = ___
8 + 2 = ___

2 Find the differences below.

\[
\begin{array}{cccccccc}
12 & 17 & 13 & 8 & 19 & 15 & 18 & 16 \\
- & 6 & - & 8 & - & 10 & - & 7 \\
\hline
- & 7 & - & 9 & - & 7 & - & 9 \\
\hline
- & 10
\end{array}
\]

14 − 7 = ___
16 − 6 = ___
15 − 9 = ___
9 − 7 = ___

3 Which of these coin collections shows 85¢?

☐
☐
☐

4 What number is missing in the pattern below?

5, 7, 9, _____, 13

☐ 12 ☐ 11 ☐ 10 ☐ 8

5 What number is missing in the pattern below?

13, 17, 21, _____, 29

☐ 22 ☐ 23 ☐ 28 ☐ 25
Assessment 4 page 2 of 2

6 Which tool would you use to measure the length of a desk?

7 School started at 8:00 a.m. Rosa was 15 minutes late to school. What time did Rosa arrive at school?

 8:15 7:45 8:30 9:15

8 Marc’s dad said they would have dinner at 6:00 p.m. The time right now is shown on the clock. How much longer before Marc and his dad have dinner?

 15 minutes 4 minutes 8 minutes 20 minutes

Use the ten-strips to show how you would solve the following problems.

9 8 + 6 = _______

10 14 – 9 = _______
Assessment 4 Class Checklist

<table>
<thead>
<tr>
<th></th>
<th>1. at least 9 of 12 addition facts correct</th>
<th>2. at least 9 of 12 subtraction facts correct</th>
<th>3. counts collection of mixed coins</th>
<th>4. completes counting pattern</th>
<th>5. completes counting pattern</th>
<th>6. identifies tool to measure length</th>
<th>7. adds 15 minutes to time</th>
<th>8. calculates elapsed time</th>
<th>9. models/explains addition</th>
<th>10. models/explains subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Student Names
Assessment 5

Overview
This assessment can be used to test key math skills toward the end of the second reporting period.

Skills & Concepts
★ adding and subtracting 2- and 3-digit numbers with and without regrouping
★ using estimation strategies to solve problems and check the accuracy of solutions
★ counting, adding, and subtracting money amounts up to $3
★ reading and interpreting a bar graph on which each division stands for more than 1 item

Timing
Toward the end of your second reporting period (late January/early February)

You'll need
★ Assessment 5, pages 1–3 (pages 39–41, class set)
★ Assessment 5 Class Checklist (page 42, as many copies as needed to document results for the class, optional)
★ base ten pieces (use pages 43 and 44, to create your own if needed)
★ real or paper/plastic money

Conducting Assessment 5
Select a day or two at the end of January or beginning of February to administer this second checkup of the year. Make a variety of manipulatives—such as base ten pieces and money—available to students when they complete this assessment. Remind students that when problems call for estimations, they don't need to find the exact answers and shouldn't spend time doing so.

Using Information from Assessment 5
For your convenience, a class checklist has been provided. Each item on the checklist corresponds to an item on the checkup so that you can record the results for your whole class, item by item, if you like. We have not assigned point values to these items, although you may choose to score the papers that way based on the skills that are emphasized in your state or district standards.
SUPPORT

Although there are 18 Support Activities in the third section of this packet, the ones listed below are particularly relevant to the items you just tested. After looking over student work, you can assign specific activities for students who need more support. Students can complete these activities with a tutor, educational assistant, or family members.

<table>
<thead>
<tr>
<th>SUPPORT ACTIVITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
</tr>
<tr>
<td>Activity 7</td>
</tr>
<tr>
<td>Activity 8</td>
</tr>
<tr>
<td>Activity 9</td>
</tr>
<tr>
<td>Activity 10</td>
</tr>
</tbody>
</table>
Assessment 5 page 1 of 3

1 Which number will make this number sentence true?

23 + □ = 38

- 5
- 15
- 24
- 25

2

67

- 18

- 51
- 49
- 85
- 38
- none of these

3 Estimate and mark which answer is closest to 50.

28 + 16

- 24 + 28
- 32 + 11
- 46 + 18

- 51
- 49
- 85
- 38
- none of these

4 Estimate and mark which has the greatest answer.

315 + 126

- 215 + 267
- 427 + 89
- 382 + 73

- 51
- 49
- 85
- 38
- none of these

5

436 – 287

- 251
- 189
- 723
- 149
- none of these
6 Which of these items costs about $3.00?

- $0.30
- $4.35
- $3.25
- $13.25

7 An apple costs 65¢ and a bottle of juice costs 85¢. Which collection of money will be enough to buy both?

- 2 quarters
- 1 quarter
- 1 dollar bill
- 2 quarters and 1 dime

8 A pack of balloons costs $2.65. Kendra paid for a pack of balloons with $3.00. Which group of coins shows how much change Kendra should get back?

- 1 quarter, 3 dimes, 1 nickel, 3 pennies
- 2 quarters, 1 nickel, 1 penny
- 1 dollar bill, 1 quarter, 1 nickel
- 2 quarters, 2 dimes, 5 pennies
9 What was the temperature on April 3?
- 45
- 50
- 55
- 60

10 On how many days was the noon temperature warmer than it was on April 3?
- 0
- 2
- 3
- 4

11 On how many days was the noon temperature warmer than 60°F?
- 1
- 2
- 3
- 4
Assessment 5 Class Checklist

<table>
<thead>
<tr>
<th>Student Names</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. solves for missing addend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. subtracts 2-digit numbers with regrouping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. estimates the sums of 2-digit numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. estimates the sums of 3-digit numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. subtracts 3-digit numbers with regrouping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. rounds money amounts to nearest dollar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. adds money amounts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. makes change from $3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. identifies data point on bar graph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. compares data on bar graph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. compares data on bar graph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Base Ten Pieces page 1 of 2
Base Ten Pieces page 2 of 2
Assessment 6

Overview
Students are given up to 3 minutes to take a 30-problem multiplication facts test, working with numbers 0, 1, 2, 5, and 10.

Skills & Concepts
★ demonstrating computational fluency with multiplication facts
★ recognizing and using the commutative property for multiplication
★ recognizing and using the identity and zero property for multiplication

Timing
Winter, early spring, and late spring

You’ll need
★ Assessment 6, Form A (page 47, class set)
★ Assessment 6, Form B (page 48, class set, save for use in the early spring)
★ Assessment 6, Form C (page 49, class set, save for use in the late spring)
★ Multiplication Facts Class Checklist (page 50, 1 copy)
★ clock or watch

Conducting Assessment 6

Give each student a copy of Assessment 6, and take a few minutes to review the kinds of facts on the page. Remind students to use what they know about those facts to help them work quickly and efficiently. They can skip around and do the facts they know first, and then come back to those that are more challenging.

Ask everyone to begin together, and keep track of how much time has passed in 10-second intervals on the overhead as they work (students will record their own times when they finish). When the last student has finished or 3 minutes are up, collect students’ papers and check them later for accuracy.

Using Information from Assessment 6

Students who do not group numbers fluently will struggle to count out the answer for each fact and will not have enough time to complete all 30 facts. Which facts did they complete? Did they skip around to get as many done as possible? What mistakes did your students make that might be the focus of a mini-lesson? If you find it helpful, you can use the Multiplication Facts Class Checklist to keep track of the results for your class.
Many third graders will have picked up multiplication concepts along the way without formal instruction. Students who can complete 30 problems with minimal errors (about 3 seconds per problem) in a minute and a half are considered proficient with these facts. If they have a conceptual understanding of the multiplication process, and fluency with the easier numbers, challenge them to work with the more difficult factors (3, 4, 6, 7, 8, and 9) in the weeks ahead.

SUPPORT ACTIVITIES

After reviewing students' responses to the items on this checkup, you can assign Support Activities for children to work on at school or at home. Although there are 18 Support Activities in the third section of this packet, the ones listed below are particularly relevant to the items you just tested.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 13</td>
<td>Spinning Around Multiplication</td>
<td>Strategies for Basic Multiplication Facts through 6 x 6</td>
</tr>
<tr>
<td>Activity 16</td>
<td>What's Missing? Bingo</td>
<td>Basic Multiplication & Division</td>
</tr>
<tr>
<td>Activity 17</td>
<td>Ten to Win</td>
<td>Basic Multiplication</td>
</tr>
<tr>
<td>Activity 18</td>
<td>Make Zero</td>
<td>Basic Addition, Subtraction, Multiplication, and Division</td>
</tr>
</tbody>
</table>

You may also want to use some of the worksheets in the Fact Fluency section (pages 63–170) to help support students who need more work with multiplication facts.
Assessment 6, Form A

\[
\begin{array}{cccccc}
0 & 1 & 3 & 1 & 0 & 1 \\
\times 7 & \times 1 & \times 0 & \times 5 & \times 8 & \times 8 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
0 & 5 & 10 & 1 & 1 & 0 \\
\times 0 & \times 1 & \times 1 & \times 0 & \times 3 & \times 2 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
2 & 5 & 2 & 5 & 3 & 3 \\
\times 10 & \times 2 & \times 3 & \times 7 & \times 2 & \times 5 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
2 & 8 & 1 & 8 & 5 & 2 \\
\times 5 & \times 2 & \times 2 & \times 5 & \times 10 & \times 7 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
7 & 8 & 10 & 6 & 10 & 6 \\
\times 10 & \times 5 & \times 2 & \times 5 & \times 4 & \times 10 \\
\hline
\end{array}
\]

© The Math Learning Center
Assessment 6, Form B

\[
\begin{array}{ccccccc}
6 & 8 & 4 & 6 & 8 & 8 \\
\times 5 & \times 2 & \times 3 & \times 8 & \times 9 & \times 3 \\
\hline
\end{array}
\]

\[
\begin{array}{ccccccc}
8 & 7 & 6 & 0 & 3 & 10 \\
\times 6 & \times 3 & \times 4 & \times 4 & \times 8 & \times 8 \\
\hline
\end{array}
\]

\[
\begin{array}{ccccccc}
10 & 8 & 3 & 3 & 9 & 8 \\
\times 8 & \times 4 & \times 3 & \times 9 & \times 9 & \times 4 \\
\hline
\end{array}
\]

\[
\begin{array}{ccccccc}
8 & 3 & 8 & 6 & 6 & 7 \\
\times 7 & \times 8 & \times 5 & \times 6 & \times 8 & \times 7 \\
\hline
\end{array}
\]

\[
\begin{array}{ccccccc}
8 & 9 & 8 & 6 & 7 & 2 \\
\times 1 & \times 4 & \times 2 & \times 9 & \times 4 & \times 3 \\
\hline
\end{array}
\]
Assessment 6, Form C

\[
\begin{array}{cccccc}
3 & 1 & 9 & 7 & 5 & 8 \\
\times 10 & \times 0 & \times 2 & \times 4 & \times 1 & \times 8 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
8 & 9 & 10 & 9 & 7 & 5 \\
\times 4 & \times 4 & \times 5 & \times 8 & \times 2 & \times 7 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
7 & 7 & 6 & 6 & 8 & 9 \\
\times 7 & \times 0 & \times 6 & \times 7 & \times 6 & \times 6 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
3 & 5 & 2 & 4 & 1 & 6 \\
\times 9 & \times 5 & \times 8 & \times 4 & \times 1 & \times 3 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
3 & 9 & 10 & 9 & 3 & 8 \\
\times 4 & \times 5 & \times 10 & \times 9 & \times 7 & \times 3 \\
\hline
\end{array}
\]
Multiplication Facts Class Checklist

| Student Names | Zero Facts \((x0)\) | Ones Facts \((x1)\) | Doubles \((x2)\) | Clock Facts \((x5)\) | Decade Facts \((x10)\) | Doubles Plus 1 Set \((x3)\) | Double-Double-Doubles \((x8)\) | Decade Facts Minus 1 Set \((x9)\) | Comments |
|---------------|---------------------|---------------------|-----------------|----------------------|-----------------------|--------------------------|-------------------------------|----------|
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
Assessment 7

Overview
This assessment can be used to test key math skills toward the end of the third reporting period.

Skills & Concepts
- identifying, modeling, and comparing place value of digits in whole numbers
- adding and subtracting up to 3-digit numbers with and without regrouping using models and a variety of efficient paper/pencil and mental strategies
- developing and using strategies for multiplication facts up to 10 × 10
- using estimation strategies such as rounding and front-end loading to solve problems and check the accuracy of solutions
- developing strategies for determining the perimeter of a rectangle
- telling time on digital clocks and determining elapsed time in minutes and hours
- recognizing 3-dimensional shapes in the environment

Timing
Last week of March or first week of April

You’ll need
- Assessment 7, pages 1–3 (pages 53–55, class set)
- Assessment 7 Class Checklist (page 56, as many copies as needed to document results for the class, optional)
- half-class set of student clocks
- half-class set of base ten pieces, optional (Use pages 43 and 44 to create your own if needed.)

Conducting Assessment 7
Select a day or two at the end of March or beginning of April to administer this skills checkup. Make a variety of manipulatives—such as base ten pieces and student clocks—available for those students who would like to use them. Remind students that when problems call for estimations, they don't need to find the exact answer and shouldn't spend time doing so.
Assessment Assessment 7 (cont.)

Using Information from Assessment 7

You may use the class checklist for this checkup to record students’ performance item by item if you wish.

SUPPORT

After reviewing students’ responses to the items on this assessment, you can assign Support Activities for children to work on at school or home. The activities listed below are most relevant to the items just tested.

<table>
<thead>
<tr>
<th>SUPPORT ACTIVITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
</tr>
<tr>
<td>Activity 11</td>
</tr>
<tr>
<td>Activity 12</td>
</tr>
<tr>
<td>Activity 13</td>
</tr>
</tbody>
</table>
Assessment 7 page 1 of 3

1 \(6 \times 4 = \)

- 12
- 32
- 24
- 30

2 \(3 \times 7 = \)

- 14
- 21
- 24
- 33

3 Use estimation to choose the closest answer.

\[
\begin{array}{c}
328 \\
+ 867 \\
\end{array}
\]

- 1190
- 1000
- 550
- 1500

4 Use estimation to choose the closest answer.

\[
\begin{array}{c}
906 \\
- 387 \\
\end{array}
\]

- 500
- 600
- 700
- 800

5 Complete the following problems. Show your thinking with pictures, numbers, and/or words.

a

\[
\begin{array}{c}
274 \\
+ 35 \\
\end{array}
\]

b

\[
\begin{array}{c}
183 \\
- 43 \\
\end{array}
\]
Assessment 7 page 2 of 3

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>is the same as</td>
<td>Amber had an appointment to take her dog to the vet at 3:40. She arrived a half-hour early for the appointment. What time did she arrive?</td>
<td>Maria started her homework at the time shown on the clock. She finished 25 minutes later. What time did she finish?</td>
<td>Jose's swim class began at 3:30 and ended at 5:10. How long was his swim class?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. What is the perimeter of the window?
 - 20 inches
 - 100 inches
 - 200 inches
 - 240 inches

11. Which of the following shapes is a cylinder?
 - []
 - []
 - []
 - []
 - []

12. Look at the figures below. This triangle could be a face of which of the following figures?
 - []
 - []
 - []
 - []
 - []
<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>finds the product of 6 × 4</td>
</tr>
<tr>
<td>2.</td>
<td>finds the product of 3 × 7</td>
</tr>
<tr>
<td>3.</td>
<td>estimates the sum of 3-digit numbers</td>
</tr>
<tr>
<td>4.</td>
<td>estimates the difference between 3-digit numbers</td>
</tr>
<tr>
<td>5a.</td>
<td>adds with regrouping</td>
</tr>
<tr>
<td>5b.</td>
<td>subtracts without regrouping</td>
</tr>
<tr>
<td>6.</td>
<td>identifies place value model for 3-digit number with regrouping</td>
</tr>
<tr>
<td>7.</td>
<td>subtracts 30 minutes from time</td>
</tr>
<tr>
<td>8.</td>
<td>adds 25 minutes to time</td>
</tr>
<tr>
<td>9.</td>
<td>calculates elapsed time</td>
</tr>
<tr>
<td>10.</td>
<td>finds the perimeter of a rectangle</td>
</tr>
<tr>
<td>11.</td>
<td>identifies a cylinder</td>
</tr>
<tr>
<td>12.</td>
<td>identifies the face of a triangular prism</td>
</tr>
</tbody>
</table>
Assessment 8

Overview
This assessment can be used to test key math skills toward the end of the school year.

Skills & Concepts
★ comparing and ordering 3-digit numbers from least to greatest
★ adding and subtracting 2- and 3-digit numbers with regrouping
★ adding and subtracting money amounts to $5.00
★ identifying visual representations of common fractions
★ demonstrating computational fluency with multiplication and division
★ multiplying a 2-digit number by a 1-digit number
★ drawing conclusions and inferences from tally charts

Timing
Late May or any other time of the year that’s appropriate for your students

You’ll need
★ Assessment 8, pages 1–3 (pages 59–61, class set)
★ Assessment 8 Class Checklist (page 62, as many copies as you need to record results for the whole class, optional)
★ red and blue colored pencils, markers, or crayons

Conducting Assessment 8
Distribute copies of the assessment and review the tasks as a class before students begin. Some students may find it helpful to color in the spinner on the last page of the assessment, so make red and blue crayons, colored pencils, or markers available to them.

Using Information from Assessment 8
You can use the class checklist to record students' results on this checkup.
After reviewing students’ results on this final checkup, you can assign Support Activities as needed for children to work on at home over the summer. The activities listed below are particularly relevant to the skills just assessed. You might also make Support Activities available to teachers who are working with some of your students in the context of summer school or other special summer programs. We recommend creating a packet for each student that contains the instructional considerations, instructions, and materials for those Support Activities that target skills he or she needs to improve. That way, you can simply provide summer school personnel or parents with the student’s packet, along with a note about the skills with which the student needs practice. The game instructions and materials may be enough to provide most parents with what they need to help their children, but you may find it appropriate to send home the instructional considerations sheets as well in some cases.

SUPPORT ACTIVITIES

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 14</td>
<td>Show the Sum</td>
<td>3-Digit Addition</td>
</tr>
<tr>
<td>Activity 15</td>
<td>Show the Difference</td>
<td>3-Digit Subtraction</td>
</tr>
<tr>
<td>Activity 16</td>
<td>What’s Missing? Bingo</td>
<td>Basic Multiplication & Division</td>
</tr>
<tr>
<td>Activity 17</td>
<td>Ten to Win</td>
<td>Basic Multiplication</td>
</tr>
<tr>
<td>Activity 18</td>
<td>Make Zero</td>
<td>Basic Addition, Subtraction, Multiplication & Division</td>
</tr>
</tbody>
</table>
Assessment 8 page 1 of 3

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123 + 88</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>211</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$3.69 + $1.23 =</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5.02</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>304 – 187</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>127</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$5.00 – $3.72 =</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1.38</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>In the spaces below, write the following numbers in order from least to greatest.</td>
</tr>
<tr>
<td></td>
<td>2045</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>least</td>
<td></td>
</tr>
</tbody>
</table>
Assessment 8 page 2 of 3

<table>
<thead>
<tr>
<th></th>
<th>6 $3 \times 7 =$</th>
<th>7 $\frac{200}{5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bigcirc 24</td>
<td>\bigcirc 195</td>
</tr>
<tr>
<td></td>
<td>\bigcirc 21</td>
<td>\bigcirc 100</td>
</tr>
<tr>
<td></td>
<td>\bigcirc 14</td>
<td>\bigcirc 1000</td>
</tr>
<tr>
<td></td>
<td>\bigcirc 28</td>
<td>\bigcirc 205</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>8 14×6</th>
<th>9 $24 \div 6 =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bigcirc 84</td>
<td>\bigcirc 5</td>
</tr>
<tr>
<td></td>
<td>\bigcirc 74</td>
<td>\bigcirc 12</td>
</tr>
<tr>
<td></td>
<td>\bigcirc 64</td>
<td>\bigcirc 4</td>
</tr>
<tr>
<td></td>
<td>\bigcirc 20</td>
<td>\bigcirc 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10 Which shows the fraction $\frac{1}{3}$?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bigcirc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>11 Which shows a fraction that is equal to $\frac{1}{3}$?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bigcirc</td>
</tr>
</tbody>
</table>
12 a Circle the chart that probably shows the results of 24 spins on the spinner above.

<table>
<thead>
<tr>
<th>white</th>
<th>blue</th>
<th>red</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>III</td>
<td>III</td>
</tr>
</tbody>
</table>

b How did you know?
Assessment 8 Class Checklist

<table>
<thead>
<tr>
<th>Student Names</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. adds with regrouping</td>
<td></td>
</tr>
<tr>
<td>2. adds money amounts with regrouping</td>
<td></td>
</tr>
<tr>
<td>3. subtracts with regrouping</td>
<td></td>
</tr>
<tr>
<td>4. subtracts money amounts with regrouping</td>
<td></td>
</tr>
<tr>
<td>5. orders multi-digit numbers</td>
<td></td>
</tr>
<tr>
<td>6. multiplies 3 × 7</td>
<td></td>
</tr>
<tr>
<td>7. multiplies 200 × 5</td>
<td></td>
</tr>
<tr>
<td>8. multiplies 14 × 6</td>
<td></td>
</tr>
<tr>
<td>9. divides 24 ÷ 6</td>
<td></td>
</tr>
<tr>
<td>10. identifies area model for 1/3</td>
<td></td>
</tr>
<tr>
<td>11. identifies fraction equivalent to 1/3</td>
<td></td>
</tr>
<tr>
<td>12a. identifies most probable results for spinner experiment</td>
<td></td>
</tr>
<tr>
<td>12b. explains reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Run as many copies as you need to record the results for your whole class.
fact fluency
Fact Fluency Addition, Subtraction & Multiplication

There is a considerable body of research to support the idea that teaching basic fact strategies helps students move from less to more efficient methods and is more effective than asking children to memorize facts by rote. In a seminal article written for *Teaching Children Mathematics* magazine (Vol.5 Number 9, May 1999, pp. 508–515) researchers Andrew C. Isaacs and William M. Carroll suggest that teachers propose and model basic fact strategies as well as asking students to share their own. Teachers are also encouraged to supplement class discussions with games and exercises designed to facilitate more sophisticated strategies.

The materials in the first part of this section are designed to help third graders build on and extend the addition and subtraction strategies listed on the two charts below.

ADDITION STRATEGIES

<table>
<thead>
<tr>
<th>Name of Strategy</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Facts (+0)</td>
<td>7 + 0 = 7</td>
</tr>
<tr>
<td></td>
<td>0 + 14 = 14</td>
</tr>
<tr>
<td>Counting On (+1, +2, +3)</td>
<td>6 + 1 = 7</td>
</tr>
<tr>
<td></td>
<td>4 + 2 = 6</td>
</tr>
<tr>
<td></td>
<td>3 + 3 = 6</td>
</tr>
<tr>
<td>Doubles</td>
<td>7 + 7 = 14</td>
</tr>
<tr>
<td></td>
<td>3 + 3 = 6</td>
</tr>
<tr>
<td>Neighbors (also called Doubles +1)</td>
<td>3 + 4 = 7</td>
</tr>
<tr>
<td></td>
<td>7 + 8 = 15</td>
</tr>
<tr>
<td>Make Ten (=10)</td>
<td>7 + 3 = 10</td>
</tr>
<tr>
<td></td>
<td>6 + 4 = 10</td>
</tr>
<tr>
<td>Fast Tens (+10)</td>
<td>10 + 5 = 15</td>
</tr>
<tr>
<td></td>
<td>8 + 10 = 18</td>
</tr>
<tr>
<td>Fast Nines (+9)</td>
<td>9 + 5 = 14</td>
</tr>
<tr>
<td></td>
<td>7 + 9 = 16</td>
</tr>
</tbody>
</table>

SUBTRACTION STRATEGIES

<table>
<thead>
<tr>
<th>Name of Strategy</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Facts (–0)</td>
<td>7 – 0 = 7</td>
</tr>
<tr>
<td></td>
<td>15 – 0 = 15</td>
</tr>
<tr>
<td>Counting Back (–1, –2, –3)</td>
<td>6 – 1 = 5</td>
</tr>
<tr>
<td></td>
<td>9 – 2 = 7</td>
</tr>
<tr>
<td></td>
<td>15 – 3 = 12</td>
</tr>
<tr>
<td>Doubles</td>
<td>7 – 7 = 0</td>
</tr>
<tr>
<td></td>
<td>12 – 12 = 0</td>
</tr>
<tr>
<td>Neighbors (1 or 2 apart)</td>
<td>4 – 3 = 1</td>
</tr>
<tr>
<td></td>
<td>8 – 6 = 2</td>
</tr>
<tr>
<td>Halves</td>
<td>10 – 5 = 5</td>
</tr>
<tr>
<td></td>
<td>16 – 8 = 8</td>
</tr>
<tr>
<td>Take Away Tens (–10)</td>
<td>19 – 10 = 9</td>
</tr>
<tr>
<td></td>
<td>14 – 10 = 4</td>
</tr>
<tr>
<td>Run Away Ones</td>
<td>19 – 9 = 10</td>
</tr>
<tr>
<td></td>
<td>14 – 4 = 10</td>
</tr>
</tbody>
</table>

Up to Ten	15 – 8 = 7
	17 – 9 = 8
	13 – 5 = 8
	12 – 7 = 5

Once children become comfortable with these strategies, there aren’t many facts left to learn. If you examine all the addition facts for numbers through 20, for instance, you’ll find that there are only 16 combinations that aren’t covered by one of these strategies, and 8 of them are reverse of the others (3 + 5, 3 + 6, 3 + 8, 4 + 7, 4 + 8, 5 + 7, 5 + 8, 6 + 8, and their reverses). The picture is slightly more complex for subtraction, but the strategies above cover most of the facts to 20 and also help students understand the relationship between addition and subtraction.

The use of strategies can be equally effective in helping students develop fluency with basic multiplication facts. When students focus on strategies, they become increasingly aware of important patterns and relationships, and are able to build on the “easy facts” (2’s, 5’s, and 10’s) to help learn more challenging facts. The multiplication sheets and activities in the second part of this Fact Fluency section are built around the strategies listed on the next page.
MULTIPLICATION STRATEGIES

<table>
<thead>
<tr>
<th>Factor</th>
<th>Category</th>
<th>Example</th>
<th>How the strategy works</th>
</tr>
</thead>
<tbody>
<tr>
<td>× 1</td>
<td>ones facts</td>
<td>1 × 4 = 4
8 × 1 = 8</td>
<td>The product of any number and 1 is that number.</td>
</tr>
<tr>
<td>× 2</td>
<td>doubles</td>
<td>2 × 6 = 12
9 × 2 = 18</td>
<td>When you multiply any number by 2, simply double that number.</td>
</tr>
<tr>
<td>× 3</td>
<td>doubles plus 1 set facts</td>
<td>3 × 6 = 18
9 × 3 = 27</td>
<td>When you multiply any number by 3, double the number and then add that number. For example, 3 × 6 = (2 × 6) + 6, which equals 18.</td>
</tr>
<tr>
<td>× 4</td>
<td>double-doubles</td>
<td>4 × 6 = 24
9 × 4 = 36</td>
<td>When you multiply any number by 4, double that number and then double the result. For example, 4 × 6 = 2(2 × 6). This is equivalent to 2 × 12 = 24.</td>
</tr>
<tr>
<td>× 5</td>
<td>clock facts</td>
<td>5 × 7 = 35
8 × 5 = 40</td>
<td>Because students are familiar with the analog clock face, they can use positions on the clock to multiply by 5. For example, “I know 5 times 7 is 35 because it is 35 minutes past the hour when the minute hand is on the 7.”</td>
</tr>
<tr>
<td>× 6</td>
<td>clock facts plus 1 set</td>
<td>6 × 7 = 42
8 × 6 = 48</td>
<td>When multiplying a number by 6, think of the related clock fact and then add the number being multiplied. For example, 6 × 7 = (5 × 7) + 7, and 35 + 7 = 42.</td>
</tr>
<tr>
<td>× 8</td>
<td>double-double-doubles</td>
<td>4 × 8 = 32
8 × 7 = 96</td>
<td>When you multiply any number by 8, double the number 3 times. For example, 8 × 7 = (2(2(2 × 7))). 2 × 7 = 14, 2 × 14 = 28, and 2 × 28 = 56.</td>
</tr>
<tr>
<td>× 9</td>
<td>decade minus 1 set facts</td>
<td>9 × 7 = 63
9 × 9 = 81</td>
<td>When you multiply any number by 9, think of the related decade fact and then subtract 1 set of the number itself. For example, 9 × 7 = (10 × 7) – 7. (10 × 7) – 7 = 70 – 7, which is 63.</td>
</tr>
<tr>
<td>× 10</td>
<td>decade facts</td>
<td>10 × 7 = 70
9 × 10 = 90</td>
<td>Multiplying by 10 comes naturally for students who have a solid grasp of skip counting and place value concepts.</td>
</tr>
</tbody>
</table>

The Fact Fluency section includes three fact strategy booklets: Solving Addition Facts, Solving Subtraction Facts, and Solving Multiplication Facts. You can use these at school or send them home for students to share with their families at any time of the year that best suits your instructional needs. Each booklet describes the strategies listed above, gives examples, and asks students to both solve and pose their own related story problems. If you choose to send these booklets home, you’ll find a letter to accompany each one on pages 77, 91, and 143. There is also a collection of practice worksheets in which students identify the strategies they’re using as they work with various sets of facts. Like all the materials in the Building Computational Fluency packet, you can use these with some or all of your students at your discretion. Finally, there are several games and related worksheets designed for use at home. Each take-home activity is accompanied by a note of explanation to families if you choose to use these as homework assignments, but any of the three could be used in class if you prefer.
What Are Ten-Strips?

Ten-strips are models we use to see numbers. They help us see groups, instead of counting one by one. Where do you see groups of 2 in the ten-strips? How about groups of 5 or 10?

Solving Leftovers

How do you solve the leftovers? Can you show your thinking on the ten-strips? Can you show your thinking with a number sentence or two? Can you make a story problem about a leftover fact?
Solving Leftovers

How do you solve the leftovers? Can you show your thinking on the ten-strips? Can you show your thinking with a number sentence or two? Can you make a story problem about a leftover fact?

Using the Ten-Strips

How many dots do you see on each pair of ten-strips? How are they the same? How are they different?

A leftover fact?

How do you solve the leftovers? Can you show your thinking on the ten-strips?
Leftovers

We call these facts leftovers. These last ten facts can be solved in many ways. Knowing doubles, neighbors, and make ten facts can really help.

\[
\begin{align*}
7 + 4 &= 11 & 4 + 7 &= 11 \\
7 + 5 &= 12 & 5 + 7 &= 12 \\
8 + 4 &= 12 & 4 + 8 &= 12 \\
8 + 5 &= 13 & 5 + 8 &= 13 \\
8 + 6 &= 14 & 6 + 8 &= 14
\end{align*}
\]

For 7 + 5, some people might think, “7 plus 3 is 10. Then 10 plus 2 is 12.” Someone else might think, “5 plus 5 is 10, and then 2 more is 12.” How do you think about some of these facts?

Using the Ten-Strips

Choose a number to show on these ten-strips. Can you show the number in more than one way?

Choose a number to show on these ten-strips. Can you show the number in more than one way?
Zero Facts

When you add 0 to any number, the sum (the answer) is always that number.
This works with larger numbers too!

26 + 0 = 26
0 + 387 = 387

Zero Facts Story Problems

1. If you had 7 cookies and someone gave you 0 cookies, how many cookies would you have in all?

2. If you had 0 cookies and someone gave you 6 cookies, how many cookies would you have in all?

Your Fast Nines

What are some other fast nine facts you know? Can you draw them and/or show them using number sentences? Can you make a story problem about a fast nine fact?
Fast Nines

When you know how to make ten and do fast tens, adding 9 is a snap! If the fact is $9 + 4$, you can think about making ten ($9 + 1 = 10$) and then adding 3 more. $9 + 4$ is the same as $10 + 3$. Where do you see the make tens and fast tens on the ten-strips below?

9 + 3 = 12
8 + 9 = 17

Do you ever use fast nines with larger numbers? If so, can you think of some examples and explain how?

Fast Nine Story Problems

1 If you had 9 pencils in your case, and got 5 more, how many pencils would you have in all?

2 If you had 7 pencils in your case and got 9 more, how many pencils would you have in all?

Your Zero Facts

What are some other zero facts you know? Can you draw them and/or show them using number sentences? Can you make a story problem about a zero fact?
Counting On

You can count on when you add just 1, 2, or 3 to another number. Start with the larger number and count up.

No matter how big the number, if you add 1, 2, or 3, it's fast to count up!

27 + 2 = 29
391 + 1 = 392
2 + 9 = 11
3 + 95 = 98

Counting On Story Problems

1. If you had 4 cookies and someone gave you 3 cookies, how many would you have in all?
2. If you had 4 cookies and someone gave you 2 cookies, how many would you have in all?
3. It's fast to count up!
 No matter how big the number, if you add 1, 2, or 3, it's fast to count up!

Your Fast Tens

What are some other Fast Ten facts you know?

Can you draw them and/or show them using number sentences? Can you make a story problem about a Fast Ten fact?

3 + 5 = 8
4 + 2 = 6
391 + 1 = 392
83 + 5 = 88
27 + 2 = 29
Fast Tens

It’s fast to add 10 to any single-digit number. You’ll always get a teen number!

\[
\begin{align*}
10 + 2 &= 12 \\
8 + 10 &= 18
\end{align*}
\]

You can apply fast tens to larger numbers too.

\[
\begin{align*}
29 + 10 &= 39 \\
247 + 10 &= 257
\end{align*}
\]

Fast Tens Story Problems

1. If I have 10 playing cards and you give me 4 more, how many will I have in all?

2. If you have 9 playing cards and I give you 10 more, how many will you have in all?

Your Counting On Facts

What are some other counting on facts you know? Can you draw them and/or show them using number sentences? Can you make a story problem about a counting on fact?

\[
\begin{align*}
10 + 2 &= 12 \\
8 + 10 &= 18
\end{align*}
\]
Doubles

When you add a number to itself, it's a double! Doubles are always even. Can you see why?

When you look at the ten-strips below, doubles are always even. Can you see why?

Your Make Ten Facts

What are some other make ten facts you know?

Can you draw them and show them using number sentences? Can you make a story problem about a make ten fact?

1. If you had 6 eggs and someone gave you 6 more, how many eggs would you have in all?
2. If you had 9 bouncy balls and someone gave you 9 more, how many bouncy balls would you have in all?

Doubles Story Problems

30 + 30 = 60
400 + 400 = 800

Doubles can work with larger numbers. Maybe you can think of some more.

© The Math Learning Center
Make Ten Facts

These pairs of numbers make ten: 9 + 1, 8 + 2, 7 + 3, 6 + 4, and 5 + 5. These are important facts because they help us think in groups of 10. What do you notice when you see make ten facts on the ten-strips?

When we work with larger numbers, make tens can help. For example 20 + 80 = 100. That’s a make 100 fact! And 300 + 700 = 1000. What would you call that fact?

Make Ten Story Problems

1 If I had 8 cookies and you gave me 2 more, how many would I have in all?

2 If you had 3 cookies and I gave you 7 more, how many would you have in all?

Your Doubles

What are some other doubles you know? Can you draw them and/or show them using number sentences? Can you make a story problem about a doubles fact?
When two numbers are right next to each other, we call them neighbors. When you know the doubles, neighbors are easy. Just double the smaller number and add 1 more. Or double the larger number and take 1 away.

Neighbors like these can be easy when you understand place value.

Neighbors Story Problems

1. If I had 4 cookies and you gave me 5 more, how many would I have in all?
2. If you had 7 flowers and I gave you 8 more, how many would I have in all?
3. If I had 4 cookies and you gave me 5 more, how many would I have in all?

Story problems can be easy when you understand a neighbors fact. What are some other neighbors facts you know? Can you draw them and/or show them using number sentences? Can you make a story about a neighbors fact?

Your Neighbors

30 + 40 = 70
500 + 400 = 900
30 + 40 = 70

Neighbors like these can be easy when you understand place value.

15 = 7 + 8
6 = 9

When two numbers are right next to each other, we call them neighbors. When you know the doubles, neighbors are easy. Just double the smaller number and add 1 more. Or double the larger number and take 1 away.

Neighbors
Fact Fluency Addition

FACT FLUENCY ADDITION – NOTE TO FAMILIES

As a classroom teacher, I appreciate the role families play in their children’s success at school. When you take the time to review your child’s schoolwork, talk about your child’s day, and practice concepts and skills, you play a very important part in your child’s education.

Please read with your child the booklet he or she brought home called Solving Addition Facts. This booklet is about some different ways to solve basic addition facts. Many of us learned our addition facts by memorizing them and then practicing them while playing card games and board games with dice. Over the past 20 years or so, research has found that many students do better when they see pictures of the facts and think about specific ways to solve them. Your child may have already mastered these addition facts or have other ways of thinking about them. In that case, thinking about new ways to solve the facts helps your child be flexible. These ways of adding numbers can also help children work with larger numbers.

Please keep this booklet in a safe place in your home so that you can refer to it in the coming weeks. If you have any questions, please contact me at school.

Instructions for Solving Addition Facts Booklet

Please read the booklet Solving Addition Facts with your child. The booklet invites you and your child to think of addition facts and draw them or write word problems about them. These activities are meant to get you and your child involved and talking with each other about mathematics. Please sign and return this sheet when you have read the booklet.

Sign here:_______________________________ Date:________________
Solving Subtraction Facts
Leftovers

There are many leftover subtraction facts. These leftover facts can be solved using a combination of strategies. For example, to solve 18 – 12 some people may think, “10 minus 10 is 0, and 8 minus 2 is 6, so 18 – 12 is 6.” Other people may think, “12 plus what would make 18?” Someone else could count up from 12 to 18. The answer is the same, but the strategies we choose depend on how we like to think about the numbers. How would you solve 18 – 12? Show how you would solve the other two facts on the ten-strips.

18 – 12 = 6
17 – 4=______
16 – 11=______

The Take-Away Model for Subtraction

One way to think about subtraction is to think about taking one group away from another. For example, if you have the problem 12 – 5, you could think about taking 5 away from 12 as shown below. The difference is what's left over. Can you see the difference between 12 and 5?

12

12 – 5 = _______
Another way to think about subtraction is to think about what you need to add to the smaller number to get to the larger number. In the example below, what do you need to add to 6 to get to 14? The amount you added is the difference between 14 and 6.

Your Up to Ten Facts

What are some other up to ten facts you know?

The Adding Up or Difference Model for Subtraction
Up to Ten

When you know how to make ten, up to ten can be a snap. If the fact is 17 – 9, you can think about making a ten (9 + 1 = 10) and then adding 7 more to get to 17 (10 + 7 = 17). The difference is the total amount you added (1 + 7 = 8 so 17 – 9 = 8). When you go up to ten, you are using addition to find the difference between the two numbers.

17 – 9 = 8

Up to Ten Story Problems

1 Sam had 8 cards in his collection. He got some more for his birthday and now he has 15. How many cards did Sam get for his birthday?

2 We need 16 points to win the game. We only have 7 points right now. How many more points do we need to win?

12 – 4 = 8

The Pictures in This Book

The pictures in this book will show both the take-away and difference models for subtraction. One group is shown in white, and the rest is shown in black. You could imagine taking away all the white dots, or you could add on the black dots to see the difference.

12 – 4 = 8

Begin with 12 dots. Take away the 4 white dots. You have 8 black dots left.

If you begin with the 4 white dots, you must add 8 black dots to get up to 12.
Your Run Away Ones Facts

What are some other run away ones you know?

What are some other run away ones you know?

Your Run Away Ones Facts

What are some other run away ones you know?

What are some other run away ones you know?

Zero Facts

When you subtract 0 from any number, the number you started with is always the difference or answer.

1. If you had 8 cookies and you didn’t eat any, how many cookies would you have?

2. If your team had 0 points and the other team had 8 points, how many points would your team need to score to tie the game?

3. If you had 8 cookies and you didn’t eat any, how many cookies would you have?

Your Run Away Ones Facts

What are some other run away ones you know?

What are some other run away ones you know?

Your Run Away Ones Facts

What are some other run away ones you know?

What are some other run away ones you know?

Zero Facts

When you subtract 0 from any number, the number you started with is always the difference or answer.

1. If you had 8 cookies and you didn’t eat any, how many cookies would you have?

2. If your team had 0 points and the other team had 8 points, how many points would your team need to score to tie the game?

3. If you had 8 cookies and you didn’t eat any, how many cookies would you have?

Your Run Away Ones Facts

What are some other run away ones you know?
Your Zero Facts

What are some other zero facts you know? Can you draw them and/or show them using number sentences? Can you make a story problem about a zero fact?

Run Away Ones

When you take all the ones away from a teen number, all you have left is 10.

When we work with larger numbers, we can use run away ones too.

1. I bought 12 eggs but 2 of them broke on the way home. How many are not broken?
 \[12 - 2 = 10 \]

2. I need 17 points to win the soccer ball. I have 7 already. How many more points do I need to win the ball?
 \[17 - 7 = 10 \]

Run Away Ones Story Problems

When we work with larger numbers, we can use run away ones too.

1. \[509 - 9 = 500 \]
2. \[868 - 8 = 860 \]
Your Take Away Tens

Counting Back Story Problems

1. If you had 7 cookies and someone ate 3 of them, how many would you have left?
2. If you had 2 cookies and your sister had 18, how many more cookies would you need to have the same number of cookies as your sister?
3. If you had 3 cookies and someone ate 2 of them, how many more cookies would you have left?

No matter how big the number, if you subtract 1, 2, or 3, it's fast to count back!

7 - 3 = 4
18 - 2 = 16
98 - 3 = 95
391 - 1 = 390

Counting Back

You can count back when you subtract 1, 2, or 3 from another number. Start with the larger number and count back.

© The Math Learning Center

Run pages 79–90 back to back, fold all together to make booklet.
Take Away Tens

Remember how easy the fast tens were for you in addition? Well, take away tens are fast too. Just think about taking away the whole ten, and all you have left is the group in the ones column. What do you notice when you look at the ten-strips below?

\[
\begin{align*}
13 - 10 & = 3 \\
18 - 10 & = 8
\end{align*}
\]

When we work with larger numbers, take away tens can help.

\[
736 - 10 = 726 \\
419 - 10 = 409
\]

Take Away Tens Story Problems

1. I have 13 pencils. I put 10 of them in my supply box. How many do I have left?
2. I need 18 pencils. I have 10 right now. How many more do I need?

Your Counting Back Facts

What are some other counting back facts you know? Can you draw them and/or show them using number sentences? Can you make a story problem about a counting back fact?
Doubles

When you see a number minus itself, the answer is always 0! If you took away all of the white dots, how many would be left?

17 – 17 = 0
8 – 8 = 0

Doubles work with larger numbers like these. Can you think of some more doubles with larger numbers?

58 – 58 = 0
208 – 208 = 0

Doubles Story Problems

1. If you had 17 eggs and someone bought all of them, how many eggs would you have left?

2. If there were 8 boys in the club and 8 girls, what’s the difference between the number of boys and girls?

3. If you had 17 eggs and someone bought all of them, how many would you have left?

Your Half Facts

What are some other half facts you know? Can you draw them and/or show them using number sentences? Can you make a story about a half fact? What is the answer if you look away all of the white dots, how many would be left?

Boys and Girls

© The Math Learning Center
Half Facts

When the smaller number is half of the larger number, it's a half fact! For example, $12 - 6$ is a half fact, because 6 is half of 12. Can you see what the difference is?

Half facts work with larger numbers too. Can you think of some more?

$100 - 50 = 50 \quad 200 - 100 = 100 \quad 250 - 125 = 125$

Half Facts Story Problems

1. If you had 14 apples and you gave 7 to your neighbor, how many apples would you have left?

2. If your team had 8 points and you needed 16 points total to win the game, how many more points would your team need to score?

Your Doubles

What are some other doubles you know? Can you draw them and/or show them using number sentences? Can you make a story problem about a doubles fact?
Your Neighbors

What are some other neighbor facts you know?

Neighborhood Story Problem

1. If you had 7 toys and gave away 6, how many would you have left?
2. If you had 11 fish and your friend had 9, how many would you have if you had 11 fish and your friend had 9?

Neighbors

Neighbors live close to you. In subtraction, neighbors are just 1 or 2 away from each other.

371 – 370 = 1 854 – 852 = 2
37 + 3 = 40 852 + 2 = 854
Neighbors work with larger numbers too.

11 – 9 = 2 7 – 6 = 1

371 – 370 = 1 854 – 852 = 2
37 + 3 = 40 852 + 2 = 854
Neighbors work with larger numbers too.

If you had 7 toys and gave away 6, how many would you have left?

If you had 11 fish and your friend had 9, how many would you have if you had 11 fish and your friend had 9?

Neighbors

Neighbors live close to you. In subtraction, neighbors are just 1 or 2 away from each other.

371 – 370 = 1 854 – 852 = 2
37 + 3 = 40 852 + 2 = 854
Neighbors work with larger numbers too.

11 – 9 = 2 7 – 6 = 1

371 – 370 = 1 854 – 852 = 2
37 + 3 = 40 852 + 2 = 854
Neighbors work with larger numbers too.
Fact Fluency Subtraction

FACT FLUENCY SUBTRACTION – NOTE TO FAMILIES

As a classroom teacher, I appreciate the role families play in their children’s success at school. When you take the time to review your child’s schoolwork, talk about your child’s day, and practice concepts and skills, you play a very important part in your child’s education.

Please read the booklet *Solving Subtraction Facts* with your child. You could read it aloud to your child, or your child might read it aloud to you. You could read half the booklet one night and half another night if it seems too long for one sitting. This booklet explains the ways we’ve been solving subtraction facts in class. Subtraction is more difficult than addition for most primary students, and we find that talking about ways to solve subtraction problems is very helpful.

Instructions for *Solving Subtraction Facts* Booklet

The activities in the booklet are designed to get you and your child talking about how you solve subtraction problems. Work through the tasks with your child as you have time. Please keep this booklet in a safe place so that you and your child can refer to it while he or she works on the basic subtraction facts. Please sign and date here when you have read the booklet.

Signature______________________________ Date_________________
Scout Them Out 1, Addition

1. Circle all the zero facts (+0's) in blue. Then take a pencil and go back and do them.
2. Circle all the +1's (counting on) in red. Then take a pencil and go back and do them.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>+0</td>
<td>+1</td>
<td>+4</td>
<td>+8</td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+3</td>
<td>+1</td>
<td>+13</td>
<td>+0</td>
<td>+4</td>
<td>+1</td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>14</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>+0</td>
<td>+15</td>
<td>+1</td>
<td>+4</td>
<td>+1</td>
<td>+9</td>
<td></td>
</tr>
</tbody>
</table>

Scout Them Out 1, Subtraction

1. Circle all the zero facts (–0's) in blue. Then take a pencil and go back and do them.
2. Circle all the –1's (counting back) in red. Then take a pencil and go back and do them.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>−1</td>
<td>−1</td>
<td>−0</td>
<td>−1</td>
<td>−0</td>
<td>−1</td>
<td>−1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4</td>
<td>18</td>
<td>17</td>
<td>14</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>−1</td>
<td>−0</td>
<td>−0</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>15</td>
<td>1</td>
<td>13</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−0</td>
<td>−0</td>
<td>−1</td>
<td>−1</td>
<td></td>
</tr>
</tbody>
</table>
Scout Them Out 2, Addition

1. Circle all the +2’s (counting on) in blue. Then take a pencil and go back and do them.
2. Circle all the fast tens (+10’s) in red. Then take a pencil and go back and do them.

\[
\begin{align*}
7 &+ 2 &+ 6 &+ 10 &+ 1 &+ 4 &+ 8 &+ 2 \\
\hline
10 &+ 3 &+ 4 &+ 10 &+ 7 &+ 8 &+ 2 &+ 2 \\
\hline
7 &+ 2 &+ 0 &+ 15 &+ 8 &+ 2 &+ 5 &+ 9 \\
\end{align*}
\]

Scout Them Out 2, Subtraction

1. Circle all the –2’s (counting back) in blue. Then take a pencil and go back and do them.
2. Circle all the takeaway tens (–10’s) in red. Then take a pencil and go back and do them.

\[
\begin{align*}
7 &- 2 &- 2 &- 10 &- 10 &- 10 &- 2 &- 2 \\
\hline
11 &- 2 &- 10 &- 10 &- 10 &- 2 &- 2 &- 10 \\
\hline
3 &- 2 &- 2 &- 2 &- 10 &- 2 &- 10 &- 2 \\
\end{align*}
\]
Scout Them Out 3, Addition

1. Circle all the doubles in blue. Then take a pencil and go back and do them.
2. Circle all the neighbors in red. Then take a pencil and go back and do them.

```
7  6  9  10  3  8  5
+ 7  + 6  + 10  + 9  + 4  + 8  + 5
____  ____  ____  ____  ____  ____  ____
```

```
3  4  6  10  2  3  2
+ 3  + 4  + 7  + 10  + 2  + 2  + 2
____  ____  ____  ____  ____  ____  ____
```

```
7  7  6  9  3  8  8
+ 8  + 6  + 5  + 9  + 2  + 7  + 9
____  ____  ____  ____  ____  ____  ____
```

Scout Them Out 3, Subtraction

1. Circle all the doubles in red. Then take a pencil and go back and do them. (like 7 – 7)
2. Circle all the neighbors in red. Then take a pencil and go back and do them.
 (like 5–4 or 8–7)

```
7  5  10  14  12  6  9
– 7  – 4  – 10  – 14  – 11  – 6  – 8
____  ____  ____  ____  ____  ____  ____
```

```
11  13  8  10  3  8  16
– 11  – 12  – 8  – 9  – 2  – 7  – 16
____  ____  ____  ____  ____  ____  ____
```

```
6  15  2  20  9  11  7
– 5  – 14  – 2  – 20  – 9  – 11  – 6
____  ____  ____  ____  ____  ____  ____
```
Scout Them Out 4, Addition

1. Circle all the doubles in blue. Then take a pencil and go back and do them.
2. Circle all the neighbors in red. Then take a pencil and go back and do them.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>+ 7</td>
<td>+ 9</td>
<td>+ 10</td>
<td>+ 9</td>
<td>+ 4</td>
<td>+ 8</td>
<td>+ 8</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>+ 3</td>
<td>+ 8</td>
<td>+ 7</td>
<td>+ 10</td>
<td>+ 6</td>
<td>+ 5</td>
<td>+ 6</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>+ 4</td>
<td>+ 7</td>
<td>+ 9</td>
<td>+ 2</td>
<td>+ 2</td>
<td>+ 4</td>
<td>+ 9</td>
<td></td>
</tr>
</tbody>
</table>

Scout Them Out 4, Subtraction

1. Circle all the halves in blue. Then take a pencil and go back and do them. (like 4–2 or 10–5)
2. Circle all the doubles in red. Then take a pencil and go back and do them. (like 6–6 or 3–3)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>– 3</td>
<td>– 6</td>
<td>– 5</td>
<td>– 10</td>
<td>– 6</td>
<td>– 12</td>
<td>– 9</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>18</td>
<td>18</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>– 4</td>
<td>– 2</td>
<td>– 9</td>
<td>– 18</td>
<td>– 4</td>
<td>– 8</td>
<td>– 1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>14</td>
<td>12</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>– 7</td>
<td>– 14</td>
<td>– 6</td>
<td>– 10</td>
<td>– 8</td>
<td>– 16</td>
<td>– 15</td>
<td></td>
</tr>
</tbody>
</table>
Scout Them Out 5, Addition

1. Circle all the fast tens (+10’s) in blue. Then take a pencil and go back and do them.
2. Circle all the fast nines (+9’s) in red. Then take a pencil and go back and do them.

\[
\begin{array}{cccccccc}
10 & 9 & 9 & 10 & 9 & 10 & 9 & 9 \\
+ 6 & + 6 & +10 & + 1 & + 4 & + 7 & + 7 & + 7 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
4 & 9 & 10 & 10 & 9 & 3 & 3 & 3 \\
+ 10 & + 4 & + 7 & +10 & + 9 & +10 & + 9 & + 9 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
10 & 9 & 10 & 9 & 10 & 9 & 4 & 4 \\
+ 6 & + 5 & + 8 & + 8 & + 2 & + 2 & + 9 & + 9 \\
\end{array}
\]

Scout Them Out 5, Subtraction

1. Circle all the take away tens in blue. Then take a pencil and go back and do them. (like 18–10)
2. Circle all the run away ones in red. Then take a pencil and go back and do them. (like 16–6)

\[
\begin{array}{cccccccc}
16 & 16 & 15 & 15 & 13 & 13 & 9 & 9 \\
- 10 & - 6 & -10 & - 5 & -10 & - 3 & - 9 & - 9 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
11 & 11 & 17 & 17 & 10 & 14 & 16 & 16 \\
- 10 & - 1 & -10 & - 7 & -10 & -10 & -10 & -10 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
15 & 16 & 12 & 20 & 19 & 12 & 19 & 19 \\
- 5 & - 6 & - 2 & -10 & - 9 & -10 & -10 & -10 \\
\end{array}
\]
Scout Them Out 6, Addition

1. Circle all the +0's in blue. Then take a pencil and go back and do them.
2. Circle all the +1's in red. Then take a pencil and go back and do them.
3. Circle all the +2's in green. Then take a pencil and go back and do them.

\[
\begin{array}{cccccccc}
0 & 9 & 9 & 1 & 2 & 10 & 4 \\
+6 & +2 & +1 & +3 & +7 & +2 & +2 \\
\hline
2 & 1 & 0 & 15 & 8 & 2 & 4 \\
+6 & +7 & +5 & +1 & +0 & +12 & +0 \\
\hline
17 & 8 & 1 & 2 & 16 & 18 & 0 \\
+1 & +2 & +5 & +5 & +0 & +2 & +9 \\
\end{array}
\]

Scout Them Out 6, Subtraction

1. Circle all the –0's in blue. Then take a pencil and go back and do them.
2. Circle all the –1's in red. Then take a pencil and go back and do them.
3. Circle all the –2's in green. Then take a pencil and go back and do them.

\[
\begin{array}{cccccccc}
16 & 7 & 4 & 9 & 10 & 8 & 9 \\
-0 & -2 & -0 & -2 & -2 & -2 & -1 \\
\hline
5 & 11 & 6 & 7 & 5 & 15 & 17 \\
-1 & -1 & -2 & -1 & -2 & -1 & -0 \\
\hline
8 & 6 & 12 & 19 & 16 & 14 & 15 \\
-1 & -0 & -2 & -1 & -2 & -1 & -0 \\
\end{array}
\]
Scout Them Out 7, Addition

1. Circle all the doubles in blue. Then take a pencil and go back and do them.
2. Circle all the neighbors in red. Then take a pencil and go back and do them.

\[
\begin{array}{ccccccc}
6 & 9 & 10 & 3 & 7 & 4 & 5 \\
+6 & +9 & +10 & +3 & +7 & +4 & +5 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
7 & 9 & 10 & 4 & 8 & 4 & 6 \\
+6 & +8 & +9 & +3 & +7 & +5 & +5 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
8 & 7 & 1 & 1 & 2 & 2 & 5 \\
+8 & +8 & +1 & +2 & +3 & +2 & +6 \\
\end{array}
\]

Scout Them Out 7, Subtraction

1. Circle all the doubles in blue. Then take a pencil and go back and do them. (like 4–4)
2. Circle all the neighbors in red. Then take a pencil and go back and do them. (like 5–4 or 11–10)

\[
\begin{array}{ccccccc}
10 & 7 & 11 & 9 & 8 & 3 & 6 \\
-10 & -7 & -10 & -9 & -8 & -2 & -6 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
12 & 20 & 5 & 5 & 6 & 7 & 1 \\
-11 & -20 & -5 & -4 & -5 & -6 & -0 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
14 & 8 & 9 & 15 & 12 & 4 & 4 \\
-14 & -7 & -8 & -14 & -12 & -4 & -3 \\
\end{array}
\]
Scout Them Out 8, Addition

1. Circle all the +2’s (counting on) in blue. Then take a pencil and go back and do them.
2. Circle all the doubles in red. Then take a pencil and go back and do them.
3. Circle all the neighbors in green. Then take a pencil and go back and do them.

\[
\begin{array}{cccccccc}
10 & 9 & 9 & 3 & 6 & 10 & 4 \\
+ 2 & + 2 & + 10 & + 3 & + 7 & + 10 & + 3 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
7 & 9 & 8 & 10 & 9 & 4 & 4 \\
+ 2 & + 8 & + 8 & + 10 & + 9 & + 4 & + 5 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
7 & 8 & 2 & 3 & 3 & 5 & 5 \\
+ 7 & + 7 & + 9 & + 2 & + 3 & + 5 & + 6 \\
\end{array}
\]

Scout Them Out 8, Subtraction

1. Circle all the –2’s (counting back) in blue. Then take a pencil and go back and do them.
2. Circle all the doubles in red. Then take a pencil and go back and do them. (like 6–6)
3. Circle all the halves in purple. Then take a pencil and go back and do them. (like 10–5)

\[
\begin{array}{cccccccc}
16 & 10 & 10 & 12 & 12 & 12 & 8 \\
- 8 & - 5 & - 10 & - 6 & - 12 & - 2 & - 4 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
8 & 6 & 18 & 18 & 6 & 6 & 4 \\
- 8 & - 2 & - 9 & - 18 & - 3 & - 6 & - 2 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
4 & 16 & 16 & 20 & 9 & 10 & 15 \\
- 4 & - 8 & - 16 & - 10 & - 2 & - 2 & - 2 \\
\end{array}
\]
Scout Them Out 9, Addition

1. Circle all the fast tens (+10’s) in blue. Then take a pencil and go back and do them.
2. Circle all the fast nines (+9’s) in red. Then take a pencil and go back and do them.

\[
\begin{array}{cccccccc}
10 & 9 & 9 & 10 & 10 & 10 & 9 \\
+ 6 & + 2 & + 10 & + 3 & + 7 & + 3 & + 3 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
7 & 9 & 9 & 10 & 9 & 4 & 4 \\
+ 10 & + 7 & + 6 & + 10 & + 9 & + 10 & + 9 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
10 & 9 & 1 & 3 & 10 & 10 & 5 \\
+ 1 & + 4 & + 9 & + 9 & + 3 & + 5 & + 9 \\
\end{array}
\]

Scout Them Out 9, Subtraction

1. Circle all the take away tens in blue. Then take a pencil and go back and do them. (like 18–10)
2. Circle all the run away ones in red. Then take a pencil and go back and do them. (like 16 –6)

\[
\begin{array}{cccccccc}
16 & 17 & 10 & 12 & 12 & 13 & 13 \\
- 10 & - 7 & - 10 & - 2 & - 10 & - 3 & - 10 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
11 & 11 & 18 & 18 & 15 & 15 & 17 \\
- 10 & - 1 & - 10 & - 8 & - 5 & - 10 & - 10 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
14 & 16 & 12 & 20 & 19 & 11 & 16 \\
- 4 & - 6 & - 2 & - 10 & - 9 & - 1 & - 6 \\
\end{array}
\]
Scout Them Out 10, Addition

1. Circle all the fast tens (+10’s) in blue. Then take a pencil and go back and do them.
2. Circle all the fast nines (+9’s) in red. Then take a pencil and go back and do them.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>+ 7</td>
<td>+ 7</td>
<td>+ 10</td>
<td>+ 1</td>
<td>+ 4</td>
<td>+ 8</td>
<td>+ 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>+ 10</td>
<td>+ 3</td>
<td>+ 7</td>
<td>+ 10</td>
<td>+ 9</td>
<td>+ 10</td>
<td>+ 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>+ 6</td>
<td>+ 5</td>
<td>+ 9</td>
<td>+ 9</td>
<td>+ 2</td>
<td>+ 4</td>
<td>+ 9</td>
<td></td>
</tr>
</tbody>
</table>

Scout Them Out 10, Subtraction

1. Circle all the take away tens in blue. Then take a pencil and go back and do them. (like 18–10)
2. Circle all the run away ones in red. Then take a pencil and go back and do them. (like 16–6)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>17</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>− 10</td>
<td>− 7</td>
<td>− 10</td>
<td>− 4</td>
<td>− 10</td>
<td>− 2</td>
<td>− 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>18</td>
<td>18</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>− 10</td>
<td>− 1</td>
<td>− 10</td>
<td>− 8</td>
<td>− 3</td>
<td>− 10</td>
<td>− 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>12</td>
<td>13</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>− 5</td>
<td>− 6</td>
<td>− 8</td>
<td>− 10</td>
<td>− 9</td>
<td>− 10</td>
<td>− 10</td>
<td></td>
</tr>
</tbody>
</table>
FACT FLUENCY

Double It!

Sarah has 4 cookies. Matt has twice that many. How many cookies does Matt have?

How many cookies do Matt and Sarah have in all?

Add these doubles.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
<td>200</td>
<td>3</td>
<td>30</td>
<td>300</td>
<td>4</td>
</tr>
<tr>
<td>+ 2</td>
<td>+20</td>
<td>+200</td>
<td>+3</td>
<td>+30</td>
<td>+300</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>5</td>
<td>50</td>
<td>500</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>+40</td>
<td>+400</td>
<td>+5</td>
<td>+50</td>
<td>+500</td>
<td>+6</td>
<td>+60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>8</td>
<td>80</td>
<td>9</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>+7</td>
<td>+70</td>
<td>+8</td>
<td>+80</td>
<td>+9</td>
<td>+90</td>
<td>+100</td>
</tr>
</tbody>
</table>

Now try doubles plus 1 more (we call them “neighbors”).

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>+3</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+6</td>
<td>+7</td>
<td>+2</td>
</tr>
</tbody>
</table>
Double It! (cont.)

\[
\begin{array}{cccccccc}
2 & 3 & 4 & 3 & 7 & 6 & 1 \\
+ 3 & + 2 & + 3 & + 4 & + 6 & + 7 & + 2
\end{array}
\]

Here's a little bit of multiplication.

\[
\begin{array}{cccc}
2 \times 3 & = & 6 & 2 \times 5 & = & 10 & 2 \times 7 & = & 14 \\
2 \times 0 & = & 0 & 2 \times 2 & = & 4 & 2 \times 9 & = & 18 \\
2 \times 8 & = & 16 & 2 \times 10 & = & 20
\end{array}
\]
Adding & Subtracting 10

Subtract

<table>
<thead>
<tr>
<th></th>
<th>27</th>
<th></th>
<th></th>
<th></th>
<th>33</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What happens every time you subtract 10 from a number?

__

__

__

Practice adding tens.

| | | | | | | | | |
|---|---|---|---|---|---|---|---|
| 24| 35| 17| 65| 28| 30| 12|
| +10| +10| +10| +10| +10| +10| +10|
Cutting Numbers in Half

Let's see what happens when we “cut” some numbers in half.

What's half of 2? _____
What's half of 6? _____
What's half of 10? ____

What's half of 20? ____
What's half of 60? _____
What's half of 100? ____

What's half of 200?____________
What's half of 600? __________
What's half of 1,000? __________

What makes it pretty easy to divide these numbers in half?
__
__
__

Try these subtract halves.

<table>
<thead>
<tr>
<th>10</th>
<th>100</th>
<th>8</th>
<th>80</th>
<th>12</th>
<th>120</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 5</td>
<td>– 50</td>
<td>– 4</td>
<td>– 40</td>
<td>– 6</td>
<td>– 60</td>
<td>– 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>100</th>
<th>8</th>
<th>80</th>
<th>12</th>
<th>120</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 5</td>
<td>– 50</td>
<td>– 4</td>
<td>– 40</td>
<td>– 6</td>
<td>– 60</td>
<td>– 20</td>
</tr>
</tbody>
</table>

Now try these.

<table>
<thead>
<tr>
<th>12</th>
<th>13</th>
<th>12</th>
<th>16</th>
<th>15</th>
<th>16</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 6</td>
<td>– 6</td>
<td>– 7</td>
<td>– 8</td>
<td>– 8</td>
<td>– 9</td>
<td>– 7</td>
</tr>
</tbody>
</table>
Double It or Cut It in Half

Add.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>+ 10</td>
<td>+ 20</td>
<td>+ 30</td>
<td>+ 40</td>
<td>+ 50</td>
<td>+ 60</td>
<td>+ 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>33</td>
<td>44</td>
<td>55</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>+ 11</td>
<td>+ 22</td>
<td>+ 33</td>
<td>+ 44</td>
<td>+ 55</td>
<td>+ 25</td>
<td>+ 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>+ 12</td>
<td>+ 13</td>
<td>+ 14</td>
<td>+ 15</td>
<td>+ 16</td>
<td>+ 21</td>
<td>+ 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>25</td>
<td>26</td>
<td>35</td>
<td>36</td>
<td>100</td>
</tr>
<tr>
<td>+ 15</td>
<td>+ 16</td>
<td>+ 25</td>
<td>+ 26</td>
<td>+ 35</td>
<td>+ 36</td>
<td>+ 100</td>
</tr>
</tbody>
</table>

Subtract.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>− 10</td>
<td>− 20</td>
<td>− 30</td>
<td>− 40</td>
<td>− 50</td>
<td>− 60</td>
<td>− 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>− 10</td>
<td>− 20</td>
<td>− 30</td>
<td>− 40</td>
<td>− 50</td>
<td>− 60</td>
<td>− 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>42</td>
<td>46</td>
</tr>
<tr>
<td>− 12</td>
<td>− 13</td>
<td>− 14</td>
<td>− 15</td>
<td>− 16</td>
<td>− 21</td>
<td>− 23</td>
</tr>
</tbody>
</table>
Leapfrog Subtraction page 1 of 2

See how fast you can leapfrog around this sheet and the next with your crayons and pencil to practice the different subtraction strategies we've learned.

Circle with blue all the –2's on the sheet. Then take your pencil and go back and do them. (Example 16 – 2)

Circle with red all the halves on the sheet. Then take your pencil and go back and do them. (Example 12 – 6 or 14 – 7)

Circle with green all the take away tens on the sheet. Then take your pencil and go back and do them. (Example 14 – 10 or 19 – 10)

Circle in purple all the run away ones on the sheet. Then take your pencil and go back and do them. (Example 13 – 3 or 17 – 7)

And now—see if you can use the ones you've circled and solved to help you figure out the rest!

10 15 14 14 14 13 19

– 2 – 2 – 7 – 6 – 8 – 3 – 9 ___ ___ ___ ___ ___ ___ ___

11 15 16 17 18 17 19

– 2 – 5 – 8 – 8 – 8 – 10 – 2 ___ ___ ___ ___ ___ ____ ___

13 18 14 10 11 18 19

– 2 – 9 – 4 – 5 – 5 – 10 – 10 ___ ___ ___ ___ ___ ____ ____)
Leapfrog Subtraction page 2 of 2

16 16 14 14 12 12 20
- 8 -9 -10 -9 -10 -9 -10
 ___ ___ ___ ___ ___ ___ ___

15 15 12 16 12 12 10
-10 -9 -3 -6 -6 -7 -5
 ___ ___ ___ ___ ___ ___ ___
Home Connection A ★ Activity

NOTE TO FAMILIES

This assignment includes a card game called Addition Facts Challenge and a worksheet called Addition & Subtraction Fact Families. As you work with your child, encourage him or her to use the ten-strips on the back of this page.

Note that each one contains two columns of 10 and that the horizontal black bar makes it easy to see the groups of 5 as well. We encourage students to use these strips to see relationships between numbers and to think about groups of 5 and 10 as they add numbers.

You’ll need the Ten-Strip Fact Cards, the ten-strips on the back of this page, and something to write with. Cut the game cards apart if your child has not already cut them apart in school.

Instructions for Addition Facts Challenge

1. Mix the cards up. Place them in a stack face down. Draw one card from the top of the pile and have your child do the same.

2. You and your child should each add the quantities shown in the ten-strips on your own cards.

3. Ask your child to describe how she or he found the sum on each card. How do you see it? Share your ideas. Your child may want to fill in the ten-strips on the back of this page to show how he or she thinks about some of the addition facts.

4. Compare sums with your child. The high value wins. In the case of a tie, you’ll each need to draw another card. The winner of that round wins all 4 cards.

5. Take turns drawing cards and playing until you are out of cards. Then count your cards. The person with the most cards wins the game.

6. When you have completed the game, ask your child to complete the worksheet and bring it back to school.
Ten-Strips
Ten-Strip Fact Cards page 1 of 4

Cut out cards along solid lines.
Ten-Strip Fact Cards

Cut out cards along solid lines.

![Ten-Strip Fact Cards](image-url)
Cut out cards along solid lines.

<table>
<thead>
<tr>
<th>Ten-Strip Fact Card</th>
<th>Ten-Strip Fact Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Card Image]</td>
<td>![Card Image]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ten-Strip Fact Card</th>
<th>Ten-Strip Fact Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Card Image]</td>
<td>![Card Image]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ten-Strip Fact Card</th>
<th>Ten-Strip Fact Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Card Image]</td>
<td>![Card Image]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ten-Strip Fact Card</th>
<th>Ten-Strip Fact Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Card Image]</td>
<td>![Card Image]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ten-Strip Fact Card</th>
<th>Ten-Strip Fact Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Card Image]</td>
<td>![Card Image]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cut out cards along solid lines.
Home Connection A ★ Worksheet

NOTE TO FAMILIES
This worksheet is designed to give your child the chance to explore the relationship between addition and subtraction using a visual model and number sentences.

Addition & Subtraction Fact Families

Write all the number sentences for the fact family shown in each pair of ten-strips. Remember that there will be just 2 facts for fact families with doubles.

example

\[
\begin{align*}
4 + 9 &= 13 \\
9 + 4 &= 13 \\
13 - 9 &= 4 \\
13 - 4 &= 9
\end{align*}
\]

example

\[
\begin{align*}
4 + 4 &= 8 \\
8 - 4 &= 4
\end{align*}
\]

CHALLENGE
Write a story problem on the back of this page using one of these facts. Bring it to school to share.
NOTE TO FAMILIES
Knowing the basic subtraction facts can make it easier for students to solve similar problems with larger numbers. For example, run away ones (e.g., 18 – 8 = 10) can be applied to compute 78 – 8 = 70. Take away tens (e.g., 18 – 10 = 8) can be applied to compute 78 – 10 = 68. Encourage your child to use run away ones and take away tens to solve the problems below.

Subtraction Facts

1 Run Away Ones

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>42</td>
<td>65</td>
<td>91</td>
<td>87</td>
<td>53</td>
<td>29</td>
</tr>
<tr>
<td>- 7</td>
<td>- 2</td>
<td>- 5</td>
<td>- 1</td>
<td>- 7</td>
<td>- 3</td>
<td>- 9</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>132</td>
<td>154</td>
<td>186</td>
<td>193</td>
<td>118</td>
<td>165</td>
</tr>
<tr>
<td>- 9</td>
<td>- 2</td>
<td>- 4</td>
<td>- 6</td>
<td>- 3</td>
<td>- 8</td>
<td>- 5</td>
</tr>
</tbody>
</table>

2 Take Away Tens

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>49</td>
<td>61</td>
<td>77</td>
<td>85</td>
<td>33</td>
<td>52</td>
</tr>
<tr>
<td>- 10</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>147</td>
<td>184</td>
<td>136</td>
<td>185</td>
<td>171</td>
<td>153</td>
</tr>
<tr>
<td>- 10</td>
<td>- 10</td>
<td>- 10</td>
<td>- 10</td>
<td>- 10</td>
<td>- 10</td>
<td>-10</td>
</tr>
</tbody>
</table>

CHALLENGE

3 On another sheet of paper, write at least ten more examples of how you can use take away tens and run away ones with larger numbers.
Home Connection C ★ Activity

NOTE TO FAMILIES

This Home Connection is a game called Up to Ten that provides practice with a collection of subtraction facts we call the up to ten facts.

Before you begin, you'll need 20 each of two kinds of small items (e.g., beans, buttons, pieces of cereal). Throughout the game, ask your child to build the smaller number in one item on the ten-strips and then use the other item to build up to ten first and then up to the larger number to find the difference. We've shown some examples in the instructions below.

Instructions for Up to Ten

1 To play, you'll need the Up to Ten Game Board, Up to Ten Cards, paperclip, pencil or pen, 2 different kinds of small objects, and ten-strips. Shuffle the cards and place them face down between you and your partner.

2 Draw 1 card from the top of the pile and have your partner do the same.

3 Find the difference for both cards using the up to ten strategy. You can confirm your answer using another strategy if you like. You can build the facts on your ten-strips with 2 different kinds of markers to show how you can find the difference.

4 Place your cards where they belong on the game board—one card in the more box and one card in the less box. Remember you are comparing the answers, the differences for each
fact. If the differences on the two cards are equal, place them in the equal box. Then draw one more card each. Determine which is more and which is less, and place them in the correct boxes.

5 Spin the more or less spinner on the game board to decide who will get both cards. (If you have cards in the equal box, the winner will get all four cards.) If the spinner lands on more, the person who had the card with the greatest difference gets to take both cards. If it lands on less, the person who drew the card with the smaller difference gets both cards.

6 Take turns drawing cards, computing the differences, and then comparing the results.

7 When you are out of cards, count your cards. The player with the most cards will put her stack in the more box and the player with the fewest will put his stack in the less box. Spin the spinner once again to decide who wins the game.
Cut out cards along solid lines.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Up to Ten Cards page 2 of 3

Cut out cards along solid lines.

<table>
<thead>
<tr>
<th>16</th>
<th>7</th>
<th>12</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>
Cut out cards along solid lines.
Home Connection C Activity (cont.)

Up to Ten Game Board

more equal less

more less
Ten-Strips
Home Connection C ★ Worksheet

Up to Ten

Solve the following subtraction facts using the *up to ten* strategy or another strategy that works for you.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>15</td>
<td>11</td>
<td>16</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>– 8</td>
<td>– 9</td>
<td>– 5</td>
<td>– 9</td>
<td>– 8</td>
<td>– 4</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>11</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>– 7</td>
<td>– 8</td>
<td>– 6</td>
<td>– 9</td>
<td>– 8</td>
<td>– 9</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>– 4</td>
<td>– 6</td>
<td>– 7</td>
<td>– 7</td>
<td>– 5</td>
<td>– 5</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>– 8</td>
<td>– 6</td>
</tr>
</tbody>
</table>
Solving Multiplication Facts

3x3 10x4 8x8 5x7
The Area Model of Multiplication

In third grade, we have been using the area model to think about multiplication. In the area model, the height and length (the dimensions) of a rectangle (also called an array) represent the factors, the two numbers being multiplied together. The product, which is the number you get when you multiply the two factors, is represented by the total area of the array.

You’ll notice that the orientation of the rectangle or array and the order of the factors do not change the product.
Using a Grid to Show Area

We use the following 10-by-10 grid to show the area of different multiplication facts.

The heavy lines break the grid into quadrants, and make it easier to determine the dimensions and area of each array. What do you notice about this grid? Do you see groups of 5, 10, and 50? How about this grid? Do you see groups of 5, 10, and 50?

What are some other decade minus 1 set facts you know? Can you draw them or show them using number sentences? Can you write a story problem about a decade minus 1 set fact?

Your Decade Minus 1 Set Facts

25 + (10 + 5) + 2 = 42
7 × 6 = 42
25, 7, and 50

Your Decade Minus 1 Set Facts

Top corner:

is 25, then add 15 more, and then add the 2 in the
of this 7-by-6 array is 42, because 1 full quadrant
tall and 6 units wide. We can also see that the

We can quickly see that the array below is 7 units

We can quickly see that the array below is 7 units.
Decade Minus 1 Set Facts

When one of the factors is 9, you can multiply by 10 and then subtract 1 set. For 9×6 think $10 \times 6 = 60$ and then subtract 6 from 60 to get 54.

9×6

$10 \times 6 = 60$

$60 - 6 = 54$

9×9

$9 \times 10 = 90$

$90 - 9 = 81$

Decade Minus 1 Set Story Problems

1. There were 7 teams in the league. Each team had 9 players. How many players were in the league?

2. There are 9 tables in the classroom. 4 students sit at each table. How many students are in the class?

What are the dimensions and area of the array shown below? Talk to each other about how you know.
0 × 8 = 0
This works with larger numbers like 345 × 0 = 0.

Zero Facts

1. If I had 5 bags with no candy in any of the bags, how many pieces of candy did I have?
2. If you had no horses to shoe, how many horseshoes would you need?

Your Double-Double-Doubles Facts
What are some other double-double-doubles facts you know? Can you write a story problem about a double-double-doubles fact?

Your Double-Double-Doubles Facts

Zero Facts
Zero times any number is zero.
Double-Double-Double Facts

When one of the factors is 8, double the other factor, double the result, and then double again. When you look at the arrays below, can you see why this works? Where do you see the doubling three times?

\[
\begin{align*}
5 \times 8 & = 40 \\
8 \times 7 & = 56 \\
5 \times 2 & = 10 \\
2 \times 7 & = 14 \\
10 \times 2 & = 20 \\
2 \times 14 & = 28 \\
20 \times 2 & = 40 \\
2 \times 28 & = 56
\end{align*}
\]

Double-Double Doubles Story Problems

1. 6 children were on each relay team. There were 8 teams. How many children altogether?

2. 8 beetles were crawling up the stalk. How many legs were crawling altogether?
Ones Facts

When one of the factors is 1, the product is always equal to the other factor.

8 × 1 = 8 1 × 5 = 5

No matter how big the number, if you multiply it by 1, you’ll get the same number.

498 × 1 = 498 1 × 763 = 763

Ones Facts Story Problems

1. If I had 1 package of party invitations with 8 cards, how many invitations would I have in all?
2. If you had 1 set of 427 baseball cards, how many cards would you have altogether?

Your Clock Plus 1 Set Facts

What are some other clock plus 1 set facts?

When one of the factors is 1, the product is always equal to the other factor.
Clock Plus 1 Set Facts

When one of the factors is 6, recall a clock fact and then add 1 more set of the number being multiplied by 6. To solve 6×8, first think 5×8 and then add 1 more set of 8. Can you see why this works when you look at the arrays below?

6×8
$(5 \times 8) + 8$
$40 + 8 = 48$

7×6
$(7 \times 5) + 7$
$35 + 7 = 42$

Clock Plus 1 Set Facts Story Problems

1. Six children were on each relay team. There were 7 teams. How many children were running the relay altogether?

2. Eight ants were marching down the sidewalk. How many legs were marching altogether?

Your Ones Facts

What are some other ones facts you know? Can you draw them or show them using number sentences? Can you write a story problem about a ones fact?
Doubles

When one of the factors is 2, just think of the addition doubles like 7 + 7. Doubles products are always even numbers. When you look at the arrays, can you see why?

Your Double-Doubles Facts

What are some other double-doubles facts you know? Can you draw them or show them using number sentences? Can you write a story problem about a double-doubles fact?

1. There were 9 players on each team. How many players were on both teams altogether?

2. If everyone in the class lined up in 2 lines and there were 10 students in each line, how many students were in the class altogether?
Double-Doubles Facts

When one of the factors is 4, you can double the other factor and then double again. Can you see why this works when you look at the arrays below?

4 x 3 = 12	8 x 4 = 32
2 x 3 = 6	8 x 2 = 16
2 x 6 = 12	16 x 2 = 32

Double-Doubles Story Problems

1. There are 4 candies in each package. I have 6 packages. How many candies do I have?

2. There were 7 ladybugs with 4 spots each. How many spots were on the ladybugs altogether?

Your Doubles Facts

What are some other doubles facts you know? Can you draw them or show them using number sentences? Can you write a story problem about a doubles fact?
Clock Facts

When one of the factors is 5, you can think of a clock face. If you can’t remember a product, you can count by fives.

5 \times 6 = 30

When the minute hand is on the 6, it is 30 minutes past the hour.

What are some other doubles plus 1 set facts you know? Can you draw them or show them using number sentences? Can you write a story problem about a doubles plus 1 set fact?

Your Doubles Plus 1 Set Facts

1. Joe had 7 nickels in his pocket. How much money did he have?

2. If Susie bought 9 baskets with 5 peaches in each basket, how many peaches did she buy?

Clock Facts Story Problems
Doubles Plus 1 Set

When one of the factors is 3, you can think about the doubles fact, and then add 1 more set of the number being doubled. For example, 6×3 is 6 doubled (12) plus another set of 6.

$3 \times 6 = 18$
$(2 \times 6) + 6$
$12 + 6 = 18$

$7 \times 3 = 21$
$(7 \times 2) + 7$
$14 + 7 = 21$

You can use this strategy with larger numbers too.

$3 \times 25 = 75$
$150 \times 3 = 450$

Doubles Plus 1 Set Story Problems

1. If you had 2 boxes of 8 crayons, and your teacher gave you another box of 8 crayons, how many crayons would you have?

2. You bought 2 bags of 5 apples. You already had 1 bag of 5 apples at home. How many apples do you have altogether?

Your Clock Facts

What are some other clock facts you know? Can you draw them or show them using number sentences? Can you write a story problem about a clock fact?
Decade Facts

Multiplying is easy when one of the factors is 10! We call these decade facts, because a decade is a group of 10. Where do you see the groups of 10 in the arrays below?

- $7 \times 10 = 70$
- $10 \times 9 = 90$

When you understand place value, multiplying larger numbers by 10 can be easy too.

- $10 \times 25 = 250$
- $670 \times 10 = 6700$

Decade Facts Story Problems

1. Max had 6 dimes in his pocket. How much money did he have?

2. If Jan bought 10 baskets with 5 apples in each basket, how many apples did she buy?

Your Decade Facts

What are some other decade facts you know? Can you draw them or show them using number sentences? Which of these problems did you solve using a decade fact?
Home Connection D ★ Activity

NOTE TO FAMILIES

For the past few weeks, we’ve been working on our basic multiplication facts at school. Instead of just memorizing the facts, we have been making sense of them by thinking about situations when we use multiplication in daily life. We have also been exploring strategies for remembering how to solve multiplication facts. In the booklet *Solving Multiplication Facts*, you’ll see story problems and strategies that can help your child make sense of and master the basic multiplication facts. As always, these strategies are shown in picture form too, using the rectangular array model that is explained at the beginning of the book.

Instructions for *Solving Multiplication Facts* Booklet

Please read the booklet *Solving Multiplication Facts* with your child. If your child is not able to read it, you can certainly read it aloud to him or her. The booklet invites you and your child to think of multiplication facts and sketch illustrations or write problems about them. These activities are meant to get you and your child involved and talking with each other about math. We encourage you to do them with your child and keep the booklet at home for future reference. Please sign and return this sheet when you have finished reading the booklet.

Signature_________________________________ Date___________________
Home Connection E ★ Worksheet

NOTE TO FAMILIES
This worksheet is intended to give your child some practice multiplying by 2, 3, 4, and 8. You can refer to your Solving Multiplication Facts booklet for reminders about different strategies for solving multiplication facts.

Multiplying by 2, 3, 4 & 8

1. Circle all the doubles (×2) in blue. Then go back and do them.

2. Circle all the doubles plus 1 set facts (×3) in red. Then go back and do them.

3. Solve the following division problems if you like. Can you use what you know about multiplication to help?

Continued on back.
4 Circle all the double-doubles (×4) in blue. Then go back and do them.
5 Circle all the double-double-doubles (×8) in red. Then go back and do them.

8 4 10 5 2
× 3 × 9 × 4 × 8 × 4
____ ____ ____ ____ ____
0 8 7 3 10
× 4 × 1 × 8 × 4 × 8
____ ____ ____ ____ ____
4 6 8 7 6
× 5 × 4 × 8 × 4 × 8
____ ____ ____ ____ ____
9 8 4 8 2
× 8 × 4 × 4 × 3 × 8
____ ____ ____ ____ ____

6 Solve the following division problems if you like. Can you use what you know about multiplication to help?

24 ÷ 3 = 16 ÷ 4 = 32 ÷ 4 = 56 ÷ 7 = 24 ÷ 6 =
48 ÷ 6 = 40 ÷ 10 = 28 ÷ 7 = 16 ÷ 2 = 40 ÷ 5 =
Scout Them Out 2 & 5, Multiplication

1 Circle all the doubles (×2) in blue. Then go back and do them.

2 Circle all the clock facts (×5) in red. Then go back and do them.

\[
\begin{array}{cccccc}
2 & 5 & 2 & 5 & 3 & 5 \\
\times 10 & \times 2 & \times 3 & \times 7 & \times 5 & \times 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
9 & 8 & 1 & 8 & 5 & 2 \\
\times 5 & \times 2 & \times 2 & \times 5 & \times 10 & \times 7 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 4 & 6 & 2 & 2 & 9 \\
\times 4 & \times 2 & \times 5 & \times 6 & \times 4 & \times 2 \\
\end{array}
\]

Scout Them Out 2 & 5, Division

3 Solve the following division problems if you like. Can you use what you know about multiplication to help?

\[
\begin{array}{cccccc}
18 \div 2 = \text{_____} & 10 \div 2 = \text{_____} & 6 \div 2 = \text{_____} & 30 \div 5 = \text{_____} \\
14 \div 2 = \text{_____} & 15 \div 5 = \text{_____} & 20 \div 5 = \text{_____} & 16 \div 2 = \text{_____} \\
2 \div 2 = \text{_____} & 40 \div 5 = \text{_____} & 50 \div 5 = \text{_____} & 8 \div 2 = \text{_____} \\
\end{array}
\]
Scout Them Out 5 & 10, Multiplication

1 Circle all the clock facts (×5) in blue. Then go back and do them.

2 Circle all the decade facts (×10) in red. Then go back and do them.

\[
\begin{array}{ccccccc}
9 & 7 & 10 & 9 & 5 & 6 \\
\times 10 & \times 5 & \times 4 & \times 5 & \times 5 & \times 10 \\
_ & _ & _ & _ & _ & _ \\
8 & 5 & 10 & 10 & 4 & 6 \\
\times 5 & \times 3 & \times 10 & \times 8 & \times 5 & \times 10 \\
_ & _ & _ & _ & _ & _ \\
3 & 5 & 4 & 5 & 8 & 7 \\
\times 10 & \times 7 & \times 10 & \times 10 & \times 10 & \times 10 \\
_ & _ & _ & _ & _ & _ \\
\end{array}
\]

Scout Them Out 5 & 10, Division

3 Solve the following division problems if you like. Can you use what you know about multiplication to help?

\[
\begin{array}{cccccc}
80 \div 10 = _ & 40 \div 10 = _ & 70 \div 10 = _ & 30 \div 5 = _ \\
45 \div 5 = _ & 100 \div 10 = _ & 40 \div 5 = _ & 30 \div 10 = _ \\
25 \div 5 = _ & 80 \div 10 = _ & 10 \div 5 = _ & 60 \div 10 = _ \\
\end{array}
\]
Scout Them Out 2 & 4, Multiplication

1. Circle all the doubles (×2) in blue. Then go back and do them.

2. Circle all the double-doubles (×4) in red. Then go back and do them.

\[
\begin{array}{cccccc}
2 & 10 & 2 & 8 & 2 & 4 \\
\times 6 & \times 4 & \times 3 & \times 4 & \times 8 & \times 7 \\
\hline
6 & 4 & 2 & 4 & 2 & 9 \\
\times 4 & \times 3 & \times 7 & \times 4 & \times 0 & \times 4 \\
\hline
2 & 5 & 10 & 5 & 4 & 9 \\
\times 9 & \times 2 & \times 2 & \times 4 & \times 2 & \times 2 \\
\end{array}
\]

Scout Them Out 2 & 4, Division

3. Solve the following division problems if you like. Can you use what you know about multiplication to help?

\[
\begin{align*}
8 \div 2 &= ___ \\
18 \div 2 &= ___ \\
20 \div 4 &= ___ \\
4 \div 4 &= ___ \\
40 \div 4 &= ___ \\
12 \div 2 &= ___ \\
16 \div 4 &= ___ \\
6 \div 2 &= ___ \\
32 \div 4 &= ___ \\
12 \div 4 &= ___ \\
20 \div 2 &= ___ \\
36 \div 4 &= ___
\end{align*}
\]
Scout Them Out 4 & 8, Multiplication

1 Circle all the double-doubles (×4) in blue. Then go back and do them.

2 Circle all the double-double-doubles (×8) in red. Then go back and do them.

\[
\begin{array}{ccccccc}
9 & 8 & 4 & 8 & 8 & 8 \\
\times 4 & \times 2 & \times 3 & \times 4 & \times 9 & \times 3 \\
\hline
8 & 10 & 6 & 0 & 8 & 10 \\
\times 6 & \times 4 & \times 4 & \times 4 & \times 8 & \times 8 \\
\hline
9 & 5 & 4 & 5 & 8 & 4 \\
\times 8 & \times 8 & \times 7 & \times 4 & \times 7 & \times 4 \\
\hline
\end{array}
\]

Scout Them Out 4 & 8, Division

3 Solve the following division problems if you like. Can you use what you know about multiplication to help?

\[
\begin{align*}
56 \div 8 &= _____ \\
40 \div 4 &= _____ \\
8 \div 8 &= _____ \\
64 \div 8 &= _____ \\
36 \div 4 &= _____ \\
24 \div 4 &= _____ \\
24 \div 8 &= _____ \\
32 \div 4 &= _____ \\
16 \div 4 &= _____ \\
8 \div 4 &= _____ \\
16 \div 8 &= _____ \\
12 \div 4 &= _____ \\
\end{align*}
\]
Scout Them Out 5 & 6, Multiplication

1 Circle all the clock facts (×5) in blue. Then go back and do them.

2 Circle all the clock plus 1 set facts (×6) in red. Then go back and do them.

\[
\begin{array}{ccccccc}
 5 & 2 & 6 & 10 & 6 & 6 \\
 \times 3 & \times 5 & \times 3 & \times 6 & \times 6 & \times 9 \\
 \hline \\
 7 & 5 & 5 & 6 & 7 & 6 \\
 \times 6 & \times 8 & \times 5 & \times 2 & \times 5 & \times 5 \\
 \hline \\
 6 & 10 & 9 & 5 & 6 & 6 \\
 \times 0 & \times 5 & \times 5 & \times 4 & \times 8 & \times 4 \\
\end{array}
\]

Scout Them Out 5 & 6, Division

3 Solve the following division problems if you like. Can you use what you know about multiplication to help?

\[
\begin{align*}
45 \div 5 &= ___ \\
15 \div 5 &= ___ \\
18 \div 6 &= ___ \\
50 \div 5 &= ___ \\
10 \div 5 &= ___ \\
6 \div 6 &= ___ \\
25 \div 5 &= ___ \\
40 \div 5 &= ___ \\
42 \div 6 &= ___ \\
12 \div 6 &= ___ \\
24 \div 6 &= ___ \\
35 \div 5 &= ___
\end{align*}
\]
Scout Them Out 2 & 3, Multiplication

1 Circle all the doubles (×2) in blue. Then go back and do them.

2 Circle all the doubles plus 1 set facts (×3) in red. Then go back and do them.

\[
\begin{array}{cccc}
2 & 3 & 3 & 9 \\
\times 4 & \times 5 & \times 3 & \times 2 \\
\hline
\end{array}
\]

\[
\begin{array}{cccc}
7 & 3 & 3 & 7 \\
\times 2 & \times 0 & \times 4 & \times 3 \\
\hline
\end{array}
\]

\[
\begin{array}{cccc}
3 & 2 & 1 & 6 \\
\times 2 & \times 10 & \times 3 & \times 3 \\
\hline
\end{array}
\]

Scout Them Out 2 & 3, Division

3 Solve the following division problems if you like. Can you use what you know about multiplication to help?

\[
\begin{array}{cccc}
9 \div 3 = & 27 \div 3 = & 6 \div 3 = & 18 \div 3 = \\
\hline
12 \div 3 = & 2 \div 2 = & 20 \div 2 = & 12 \div 2 = \\
\hline
21 \div 3 = & 14 \div 2 = & 18 \div 2 = & 4 \div 2 = \\
\hline
\end{array}
\]
Scout Them Out 10 & 9, Multiplication

1. Circle all the decade facts (×10) in blue. Then go back and do them.

2. Circle all the decade minus 1 set facts (×9) in red. Then go back and do them.

 | 10 | 10 | 9 | 9 | 10 | 9 |
 | × 8 | × 10 | × 4 | × 9 | × 6 | × 6 |
 | ___ | ___ | ___ | ___ | ___ | ___ |

 | 9 | 7 | 9 | 9 | 9 | 9 |
 | × 3 | × 10 | × 7 | × 2 | × 5 | × 10 |
 | ___ | ___ | ___ | ___ | ___ | ___ |

 | 4 | 10 | 5 | 10 | 9 | 3 |
 | × 10 | × 1 | × 10 | × 2 | × 8 | × 10 |
 | ___ | ___ | ___ | ___ | ___ | ___ |

Scout Them Out 10 & 9, Division

3. Solve the following division problems if you like. Can you use what you know about multiplication to help?

 100 ÷ 10 = ____ 45 ÷ 9 = ____ 63 ÷ 9 = ____ 80 ÷ 10 = ____

 9 ÷ 9 = ____ 18 ÷ 9 = ____ 72 ÷ 9 = ____ 70 ÷ 10 = ____

 50 ÷ 10 = ____ 20 ÷ 10 = ____ 27 ÷ 9 = ____ 54 ÷ 9 = ____
Scout Them Out 8 & Square Number Facts, Multiplication

1. Circle all the double-double-doubles ($\times 8$) in blue. Then go back and do them.

2. Circle all the square facts (like 6×6) in red. Then go back and do them.

\[
\begin{array}{ccccccc}
10 & 3 & 8 & 8 & 8 & 10 \\
\times 10 & \times 3 & \times 3 & \times 6 & \times 8 & \times 8 \\
\hline
\end{array}
\]

\[
\begin{array}{ccccccc}
8 & 9 & 1 & 6 & 8 & 5 \\
\times 2 & \times 9 & \times 1 & \times 6 & \times 4 & \times 5 \\
\hline
\end{array}
\]

\[
\begin{array}{ccccccc}
4 & 7 & 5 & 7 & 8 & 2 \\
\times 4 & \times 8 & \times 8 & \times 7 & \times 9 & \times 2 \\
\hline
\end{array}
\]

Scout Them Out 8 & Square Number Facts, Division

3. Solve the following division problems if you like. Can you use what you know about multiplication to help?

\[
\begin{array}{cccc}
24 \div 8 = _ & 48 \div 8 = _ & 49 \div 7 = _ & 40 \div 8 = _ \\
72 \div 8 = _ & 9 \div 3 = _ & 36 \div 6 = _ & 100 \div 10 = _ \\
16 \div 4 = _ & 56 \div 8 = _ & 81 \div 9 = _ & 16 \div 8 = _ \\
\end{array}
\]
Practice 0’s, 1’s, 2’s and 3’s Multiplication

Zero Facts (×0), Ones Facts (×1), Doubles (×2), and Doubles Plus 1 Set (×3)

\[
\begin{array}{cccccc}
7 & 3 & 0 & 6 & 8 \\
\times 2 & \times 6 & \times 7 & \times 2 & \times 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
10 & 3 & 1 & 2 & 7 \\
\times 0 & \times 8 & \times 1 & \times 3 & \times 3 \\
\end{array}
\]

\[
\begin{array}{cccccc}
2 & 6 & 1 & 3 & 2 \\
\times 2 & \times 1 & \times 4 & \times 0 & \times 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
3 & 0 & 7 & 1 & 4 \\
\times 3 & \times 5 & \times 1 & \times 10 & \times 3 \\
\end{array}
\]

Practice 0’s, 1’s, 2’s and 3’s Division

Use what you know about multiplication to complete these division facts.

\[
\begin{array}{c}
12 \div 3 = ___ \\
12 \div 2 = ___ \\
21 \div 3 = ___ \\
8 \div 2 = ___ \\
0 \div 3 = ___ \\
\end{array}
\]
FACT FLUENCY

Practice 2’s, 3’s, 5’s and 6’s Multiplication

Doubles (×2), Doubles Plus 1 Set (×3), Clock Facts (×5), and Clock Facts Plus 1 Set (×6)

\[
\begin{array}{cccccc}
6 & 5 & 6 & 5 & 2 \\
\times 6 & \times 3 & \times 2 & \times 5 & \times 9 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
4 & 8 & 7 & 8 & 5 \\
\times 6 & \times 2 & \times 3 & \times 3 & \times 6 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 3 & 4 & 6 & 9 \\
\times 2 & \times 6 & \times 2 & \times 5 & \times 3 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccc}
3 & 2 & 6 & 2 & 4 \\
\times 3 & \times 6 & \times 3 & \times 7 & \times 5 \\
\hline
\end{array}
\]

Practice 2’s, 3’s, 5’s and 6’s Division

Use what you know about multiplication to complete these division facts.

\[
\begin{align*}
16 \div 2 &= ____ \\
15 \div 5 &= ____ \\
27 \div 3 &= ____ \\
48 \div 6 &= ____ \\
45 \div 5 &= ____ \\
\end{align*}
\]
Practice 4’s, 5’s, 6’s and 8’s Multiplication

Clock Facts (×5), Clock Facts Plus 1 Set (×6), Double-Doubles (×4), and Double-Double-Doubles (×8)

\[
\begin{array}{cccccc}
7 & 5 & 4 & 9 & 6 \\
\times 8 & \times 5 & \times 4 & \times 6 & \times 8 \\
\end{array}
\]

\[
\begin{array}{cccccc}
6 & 8 & 5 & 4 & 8 \\
\times 5 & \times 6 & \times 9 & \times 3 & \times 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 6 & 7 & 4 & 8 \\
\times 8 & \times 6 & \times 4 & \times 6 & \times 8 \\
\end{array}
\]

\[
\begin{array}{cccccc}
8 & 7 & 4 & 6 & 5 \\
\times 3 & \times 5 & \times 8 & \times 7 & \times 6 \\
\end{array}
\]

Practice 4’s, 5’s, 6’s and 8’s Division

Use what you know about multiplication to complete these division facts.

\[
\begin{array}{cccccc}
5 \div 30 & 4 \div 28 & 8 \div 56 & 6 \div 48 & 8 \div 40 \\
\end{array}
\]
Practice 4’s, 8’s, 9’s and 10’s Multiplication

Double-Doubles (×4), Double-Double-Doubles (×8), Decade Minus 1 Set (×9), and Decade Facts (×10)

\[
\begin{array}{ccccc}
7 & 4 & 8 & 10 & 8 \\
\times 4 & \times 10 & \times 9 & \times 6 & \times 6 \\
\hline
0 & 8 & 9 & 9 & 8 \\
\times 4 & \times 10 & \times 4 & \times 6 & \times 8 \\
\hline
7 & 9 & 8 & 7 & 10 \\
\times 8 & \times 9 & \times 4 & \times 9 & \times 7 \\
\hline
4 & 8 & 10 & 4 & 9 \\
\times 9 & \times 1 & \times 9 & \times 6 & \times 8 \\
\end{array}
\]

Practice 4’s, 8’s, 9’s and 10’s Division

Use what you know about multiplication to complete these division facts.

\[
\begin{array}{cccccc}
10 \div 70 & 9 \div 81 & 8 \div 48 & 4 \div 36 & 9 \div 54 \\
\hline
\end{array}
\]
NOTE TO FAMILIES
This card game gives students practice with their multiplication facts. The game uses a variety of models for multiplication including the array model, counting patterns, and equal groups. Remind your child to complete the worksheet and return it to school.

Instructions for Multiplication Draw

1. Shuffle the cards and place them face down between both players.

2. Each player draws a card and figures out the solution. The solution might be the solution to a multiplication fact, a missing number in a counting pattern, the total area of an array, or the total number of objects in equal groups.

3. Make sure both partners agree on the solutions.

4. The player whose solution is greater takes both cards.

5. Continue drawing cards until there are no cards left. Then determine how many cards each player has. Can you count the cards by 2’s or 3’s to make it faster? The player with the most cards wins!

Midori Mom, your solution is 24, because it’s adding 4 each time. The area of my array is 36, so I win!
Multiplication Draw Cards

Cut out cards along solid lines.

<table>
<thead>
<tr>
<th>12, 16, 20, 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>18, 24, 27, 36</td>
</tr>
<tr>
<td>18, 28, 36, 42</td>
</tr>
<tr>
<td>9, 12, 15, 21</td>
</tr>
<tr>
<td>21, 28, 36, 42</td>
</tr>
<tr>
<td>24, 32, 39, 48</td>
</tr>
</tbody>
</table>

What is the total area?

Multiplication Draw Card

Multiplication Draw Card

Multiplication Draw Card

Multiplication Draw Card

Multiplication Draw Card
What is the total area?

How many sides?

How many sides?

How many sides?

How many sides?

Cut out cards along solid lines.
Multiplication Draw Cards

Cut out cards along solid lines.
Home Connection G ★ Worksheet

NOTE TO FAMILIES
This worksheet gives students practice with some of the more difficult multiplication facts. You could encourage your child to use the \(\times 5 \) facts to help solve the \(\times 6 \) facts on this page and the \(\times 10 \) facts to help solve the \(\times 9 \) facts on the back. Refer to your Solving Multiplication Facts booklet if you need to review how these strategies work. The worksheet also provides some challenge with division facts if your child wants to try division, but students are not required to complete the division problems.

Multiplying by 5, 6, 9 & 10

1 Circle all the clock facts (\(\times 5 \)) in blue. Then go back and do them.

2 Circle all the clock facts plus 1 set facts (\(\times 6 \)) in red. Then go back and do them.

\[
\begin{array}{ccccccc}
10 & 6 & 0 & 6 & 10 & 9 & 5 \\
\times 6 & \times 6 & \times 5 & \times 0 & \times 5 & \times 5 & \\
& & & & & & \\
1 & 7 & 5 & 6 & 5 & 5 & 5 \\
\times 6 & \times 6 & \times 8 & \times 8 & \times 5 & \times 3 & \\
& & & & & & \\
6 & 6 & 5 & 6 & 7 & 6 & 5 \\
\times 4 & \times 9 & \times 4 & \times 2 & \times 5 & \times 5 & \\
& & & & & & \\
\end{array}
\]

CHALLENGE

3 Solve the following division problems if you like. Use what you know about multiplication to help.

\[
\begin{array}{ccccccc}
6 \div 6 = ____ & 12 \div 6 = ____ & 5 \div 5 = ____ & 10 \div 5 = ____ \\
18 \div 6 = ____ & 24 \div 6 = ____ & 40 \div 5 = ____ & 48 \div 6 = ____ \\
20 \div 5 = ____ & 30 \div 5 = ____ & 36 \div 6 = ____ & 42 \div 6 = ____ \\
\end{array}
\]

Continued on back.
4 Circle all the decade facts (×10) in blue. Then go back and do them.

5 Circle all the decade minus 1 set facts (×9) in red. Then go back and do them.

\[
\begin{array}{ccccccc}
9 & 7 & 9 & 10 & 9 & 10 \\
\times 8 & \times 10 & \times 6 & \times 10 & \times 4 & \times 1 \\
\hline
5 & 3 & 9 & 4 & 9 & 10 \\
\times 10 & \times 10 & \times 7 & \times 10 & \times 9 & \times 6 \\
\hline
10 & 0 & 2 & 9 & 9 & 9 \\
\times 8 & \times 9 & \times 9 & \times 5 & \times 10 & \times 3 \\
\end{array}
\]

CHALLENGE

6 Solve the following division problems if you like. Use what you know about multiplication to help.

\[
\begin{align*}
100 \div 10 &= \(__) \\
45 \div 9 &= \(__) \\
9 \div 9 &= \(__) \\
18 \div 9 &= \(__) \\
36 \div 9 &= \(__) \\
40 \div 10 &= \(__) \\
50 \div 10 &= \(__) \\
20 \div 10 &= \(__) \\
27 \div 9 &= \(__) \\
60 \div 10 &= \(__) \\
72 \div 9 &= \(__) \\
81 \div 9 &= \(__) \\
\end{align*}
\]
NOTE TO FAMILIES

This worksheet below will provide students with a chance to practice some multiplication facts.

Quick Facts Multiplication

1. Multiply each of the numbers below by 5. Write the product in the box. In the example, the number 5 was multiplied by 7, so the product 35 is written in the box.

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>5</th>
<th>3</th>
<th>1</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Continued on back.
2. Multiply each of the numbers below by 3. Write the product in the box.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

3. Multiply each of the numbers below by 4. Write the product in the box.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Support Activities

The Support Activities are listed by skill in the table below, and are designed to supplement any third grade math program. There are 18 games in the collection. Most are intended for partners or small groups, although some can be adapted for use with an entire class. Most involve the use of visual models and strategies, and will help students develop conceptual understandings as they gain increased fluency. As you look through the collection, you may find some games you want to use to help teach key computational skills to your whole class. Some teachers also run the game components on cardstock and laminate them to make a durable set of “learning stations” available for use by students during free time or to check out for home use.

STRATEGIES FOR BASIC ADDITION FACTS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Support Blackline Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Activity 1</td>
<td>Doubles Spin</td>
<td>S 1.1–1.8</td>
</tr>
<tr>
<td>Support Activity 2</td>
<td>Spinning Around Addition</td>
<td>S 2.1–2.5</td>
</tr>
<tr>
<td>Support Activity 3</td>
<td>Triple Spin & Add</td>
<td>S 3.1–3.5</td>
</tr>
<tr>
<td>Support Activity 4</td>
<td>Sorting Addition facts</td>
<td>S 4.1–4.8</td>
</tr>
</tbody>
</table>

STRATEGIES FOR BASIC SUBTRACTION FACTS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Support Blackline Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Activity 5</td>
<td>Make Half</td>
<td>S 5.1–5.2</td>
</tr>
<tr>
<td>Support Activity 6</td>
<td>Spinning Around Subtraction</td>
<td>S 6.1–6.6</td>
</tr>
</tbody>
</table>

MULTI-DIGIT ADDITION

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Support Blackline Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Activity 7</td>
<td>Make 100</td>
<td>S 7.1–7.7</td>
</tr>
<tr>
<td>Support Activity 8</td>
<td>Race to 100 & Back</td>
<td>S 8.1–8.7</td>
</tr>
<tr>
<td>Support Activity 14</td>
<td>Show the Sum</td>
<td>S 14.1–14.3</td>
</tr>
</tbody>
</table>

MULTI-DIGIT SUBTRACTION

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Support Blackline Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Activity 8</td>
<td>Race to 100 & Back</td>
<td>S 8.1–8.7</td>
</tr>
<tr>
<td>Support Activity 11</td>
<td>Count Down 400</td>
<td>S 11.1–11.4</td>
</tr>
<tr>
<td>Support Activity 15</td>
<td>Show the Difference</td>
<td>S 15.1–15.3</td>
</tr>
</tbody>
</table>

COMPUTATION WITH MONEY

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Support Blackline Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Activity 9</td>
<td>Three Turns to Win</td>
<td>S 9.1–9.6</td>
</tr>
<tr>
<td>Support Activity 10</td>
<td>Finish with $4</td>
<td>S 10.1–10.4</td>
</tr>
</tbody>
</table>
Support Activities (cont.)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Support Blackline Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Activity 12</td>
<td>Faces of a Solid</td>
<td>S 12.1–12.4</td>
</tr>
</tbody>
</table>

2- AND 3-DIMENSIONAL GEOMETRY

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Support Blackline Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Activity 13</td>
<td>Spinning Around Multiplication</td>
<td>S 13.1–13.6</td>
</tr>
</tbody>
</table>

STRATEGIES FOR BASIC MULTIPLICATION

<table>
<thead>
<tr>
<th>Activity</th>
<th>Name</th>
<th>Support Blackline Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Activity 16</td>
<td>What’s Missing? Bingo</td>
<td>S 16.1–16.6</td>
</tr>
<tr>
<td>Support Activity 17</td>
<td>Ten to Win</td>
<td>S 17.1–17.6</td>
</tr>
<tr>
<td>Support Activity 18</td>
<td>Make Zero</td>
<td>S 18.1–18.4</td>
</tr>
</tbody>
</table>

PRACTICE OF BASIC ADDITION, SUBTRACTION, MULTIPLICATION, OR DIVISION FACTS

If you plan to use the activities for remediation rather than instructional purposes, you’ll find that they’re most effective when used with targeted students by an educational assistant, parent volunteer, or title/resource teacher. Based on students’ performance on the Building Computational Fluency assessments, you’ll be able to determine which individuals would benefit from a particular Support Activity and can assign them to work with an adult on that activity. You can also send specific activities home with students for extra practice with their families. In order to prepare the Support Activities for use by other adults, we recommend creating a packet that contains the instructional considerations, game instructions, and all the game materials. That way, you can provide an instructional assistant or volunteer with the packet and ask him or her to conduct specific activities with individuals or small groups in need of help in one or more areas.

While you can run game cards and spinners on cardstock, you’ll find that paper copies of the game components work nearly as well for short-term use. Students are generally instructed to use a paperclip and pencil arrangement in lieu of more involved spinner arrows, and we encourage you to have the children cut out their own game cards. Because these games have been designed for use at home as well as school, very few of them involve concrete manipulatives. Those that do include blacklines for making the manipulatives (i.e., base 10 pieces or money value pieces), and you may want to run these sheets on cardstock. A few of the activities call for game markers, but beans, pieces of macaroni, or other small objects will also work.
Support Activity 1 ★ Instructional Considerations

Doubles Spin

Overview
Players take turns spinning a number from 1 to 10. They double the number and cover it on their half of the game board. The first player to cover all the doubles sums from 2 to 20 wins.

Skills & Concepts
★ using models for doubles addition facts with sums from 2 to 20
★ fluency with the doubles strategy in addition

You’ll need
★ Doubles Spin & Make Half Game Board (Blacklines S 1.3 and 1.4, 1 copy of each, taped together, per pair of players)
★ Doubles & Halves Spinner (Blackline S 1.5, 1 copy for every 2 pairs of players)
★ Ten-Strips (Blackline S 1.6, 1 copy per student, optional)
★ 10 game markers per player
★ paperclip and a pencil to use as a spinner (one set per pair of players)

Note
If you are not familiar with the ten-strip model or the addition strategies used in Bridges, please review Blacklines S 1.7 and 1.8 before playing this game with students.

The doubles strategy for addition is key to fluency with neighbors facts and leftover facts as well. If you have students who are really struggling with doubling numbers, encourage them to build each double using game markers on the ten-strips.

Students may recall that doubles sums are always even, and they might notice that the numbers on the game board increase by 2 each time. These are big ideas that involve algebraic thinking and promote computational fluency. You'll want them to come from the students, though, so don't push it if they're not making these generalizations yet.
Support Activity 1

SUPPORT ACTIVITY

Doubles Spin

You’ll need

★ Doubles Spin & Make Half Game Board (Blacklines NC S 1.3 and 1.4, 1 copy of each, taped together, per pair of players)
★ Doubles & Halves Spinner (Blackline S 1.5, 1 copy for every 2 pairs of players)
★ Ten-Strips (Blackline S 1.6, 1 copy per student, optional)
★ 10 game markers per player
★ paperclip and a pencil to use as a spinner (one set per pair of players)

Instructions for Doubles Spin

1 Get a partner and sit on opposite sides of the game board.

2 You’ll need to use a pencil and paperclip to create a spinner as shown below.

3 If you get a sum that is already covered, you’ll have to pass.

4 The player who covers all ten numbers on his or her side first is the winner.

Take turns spinning the spinner.
Double the number you got and cover the sum. For instance, if you got a 2, you’ll say, “Two plus two equals four,” and cover the 4 on your side of the game board with a marker.
Run 1 copy each of Blacklines NC S 1.3 and 1.4 and tape together for each pair of players.
Run 1 copy each of Blacklines NC S 1.3 and 1.4 and tape together for each pair of players.
Doubles & Halves Spinner

Doubles & Halves Spinner
Ten-Strips
The Ten-Strips Model

Students who have had *Bridges* in years past will recognize the ten-strips and will probably be comfortable using them. You'll notice that each pair of ten-strips has two columns of 10 squares. Both columns are cut in half with a horizontal bar. This model is an effective way to encourage students to think in chunks of 5's and 2's and to use 10 as a landmark number.

In the support games for addition, students may find it helpful to show their thinking on the ten-strips, using colored game markers to add numbers.

Erica
Hmm, 7 plus 4? I can put 7 red markers down and then I'll add 3 more blue ones. That's 10. Then 1 more blue marker makes 11. See?
Addition Strategies

Many of the Support Activities encourage students to identify the specific strategies they can use to solve addition facts. Students have reviewed these strategies and used them in second and third grade Bridges, but we realize that some of the strategies, or at least their titles, may be new to you. Encourage students to explain the strategies to you as they work, and consult this table to refresh your memory.

Most of the strategies are self-explanatory, and the examples on the table should provide some insight about them. The make ten facts are simply combinations whose sum is 10. The fast tens are fast, because when you add 10 to any single-digit number, you get a teen number, as in 10 + 6 = 16. The fast nines are a little trickier for some third graders, but once they know their fast tens, adding 9 becomes faster. For example, when you know that 10 plus 7 is 17, you can see quickly that 9 plus 7 must be 16, because it's just 1 less than 10 plus 7.

<table>
<thead>
<tr>
<th>Name of Strategy</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Facts (+0)</td>
<td>7 + 0 = 7</td>
</tr>
<tr>
<td></td>
<td>0 + 14 = 14</td>
</tr>
<tr>
<td>Counting On (+1, +2, +3)</td>
<td>6 + 1 = 7</td>
</tr>
<tr>
<td></td>
<td>4 + 2 = 6</td>
</tr>
<tr>
<td></td>
<td>9 + 3 = 12</td>
</tr>
<tr>
<td>Doubles</td>
<td>7 + 7 = 14</td>
</tr>
<tr>
<td></td>
<td>3 + 3 = 6</td>
</tr>
<tr>
<td>Neighbors (also called Doubles +1)</td>
<td>3 + 4 = 7</td>
</tr>
<tr>
<td></td>
<td>8 + 7 = 15</td>
</tr>
<tr>
<td>Make Ten (=10)</td>
<td>7 + 3 = 10</td>
</tr>
<tr>
<td></td>
<td>6 + 4 = 10</td>
</tr>
<tr>
<td>Fast Tens (+10)</td>
<td>10 + 5 = 15</td>
</tr>
<tr>
<td></td>
<td>8 + 10 = 18</td>
</tr>
<tr>
<td>Fast Nines (+9)</td>
<td>9 + 5 = 14</td>
</tr>
<tr>
<td></td>
<td>7 + 9 = 16</td>
</tr>
</tbody>
</table>
Support Activity 2 ★ Instructional Considerations

Spinning Around Addition

Overview
Players take turns spinning addition facts and naming the strategies that could be used to solve them. They pick one strategy for each fact and write a number sentence in the column labeled with that strategy name. The first player to record at least one fact in each column wins.

Skills & Concepts
★ using models for addition sums to 20
★ fluency with the doubles, neighbors, make ten, fast tens, and fast nines strategies for addition

You’ll need
★ Ten-Strips (Blackline S 1.6, 1 copy per player)
★ Spinning Around Addition Record Sheet (Blackline S 2.4, 1 copy per player)
★ Spinning Around Addition Spinner (Blackline S 2.5, 1 copy for every 2 pairs of players)
★ 20 game markers per player
★ paperclip and a pencil to use as a spinner (one set per pair of players)

Note If you are not familiar with the ten-strip model or the addition strategies used in Bridges, please review Blacklines NC S 1.7 and 1.8 before playing this game with students.

Four of the strategies in this activity are generally comfortable for third graders: doubles, neighbors, make ten, and fast tens. The fast nines and leftovers tend to present more of a challenge. We included some of the easier facts to provide students with opportunities for success and to help students use the facts they do know to think about those they don’t know yet. For example, if a student is comfortable with fast tens, she can begin to use her fast ten facts to help master the fast nines: “I know 7 plus 10 is 17, so 7 plus 9 is 1 less than that. 7 plus 9 must be 16.”

Before finding the sum, students determine what kind of fact they have spun. Then they use the strategy to compute the sum. Guided practice focusing on strategy retrieval will build students’ computational fluency and is consistent with best practice for helping students develop number sense and master the basic facts.

Students will also connect the facts to their symbolic notation when they record number sentences on their record sheets. They may also use the ten-strip model to show the facts, connecting the concrete model to the abstract symbolic notation.
Support Activity 2

Spinning Around Addition

You’ll need

- Ten-Strips (Blackline S 1.6, 1 copy per player)
- Spinning Around Addition Record Sheet (Blackline S 2.4, 1 copy per player)
- Spinning Around Addition Spinner (Blackline S 2.5, 1 copy for every 2 pairs of players)
- 20 game markers per player
- paperclip and a pencil to use as a spinner (one set per pair of players)

Instructions for Spinning Around Addition

1. You and your partner should each get your ten-strips, game markers, and a record sheet ready. You’ll share a pair of numbered spinners.

2. Spin the first and second spinners. Figure out what kind of fact you have spun. For instance, if it's 5 + 5, it's a double. If it's 4 + 7, it's a leftover.

3. Use the game markers to build the fact on your ten-strips. Explain to your partner how you would find the sum.

“I put down 7 markers. Then I added 4 more. It’s easy to see that it’s 11. 7 plus 3 makes 10, and then there’s just 1 more.”
4 Write the number sentence in the appropriate column on your record sheet. Don't forget to include the sum. Some facts might be more than one kind of fact. For example, $5 + 5$ is a doubles fact and a make ten fact. You can choose the column in which you want to write these kinds of facts.

5 The first person to complete a row across wins that round. You might have more than one fact in each box before you are able to write at least one fact in every box.

6 Play 3 rounds.

<table>
<thead>
<tr>
<th>Round 3</th>
<th>Round 2</th>
<th>Round 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 + 6 = 12</td>
<td>3 + 9 = 12</td>
<td>6 + 8 = 14</td>
</tr>
<tr>
<td>3 + 3 = 6</td>
<td>4 + 6 = 10</td>
<td>3 + 12</td>
</tr>
</tbody>
</table>

NAME DATE
Spinning Around Addition Record Sheet

Jamal September 13
Spinning Around Addition Record Sheet

<table>
<thead>
<tr>
<th>Leftovers</th>
<th>Fast Nines</th>
<th>Fast Tens</th>
<th>Make Ten</th>
<th>Doubles Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Round 3</th>
<th>Round 2</th>
<th>Round 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spinning Around Addition Spinner

Spinning Around Addition Spinner
Support Activity 3 ★ Instructional Considerations

Triple Spin & Add

Overview
Students take turns spinning 3 spinners and adding the numbers shown on the spinners. Both players record a number sentence to show the sum of the 3 numbers. If the sum is even, they write the number sentence in the even column. If the sum is odd, they write the number sentence in the odd column.

Skills & Concepts
★ using strategies for addition facts with sums to 20
★ using models, words, and/or numbers to demonstrate the meaning of addition
★ identifying odd and even numbers
★ recording number sentences
★ evaluating the likelihood of specific outcomes for an experiment

You’ll need
★ Triple Spin & Add Record Sheet (Blackline S 3.4, 2 copies per player, run back-to-back)
★ Ten-Strips (Blackline S 1.6, 1 copy per player)
★ Triple Spin & Add Spinner (Blackline S 3.5, 1 copy for every 2 pairs of players)
★ 20 game markers per player
★ paperclip and a pencil to use as a spinner (one set per pair of players)

This game presents the challenge of finding efficient ways to add 3 numbers. For example, if a player spun a 3, 4, and 6 she might want to make a 10 with the 4 and 6, and then use fast tens to add 10 and 3.

You might also ask students to consider which column will fill faster. That is, are they more likely to get an even sum or an odd sum with each spin? Can they explain their thinking?

<table>
<thead>
<tr>
<th>Odd Sums</th>
<th>Even Sums</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 + 7 + 5 = 15$</td>
<td></td>
</tr>
</tbody>
</table>
Support Activity 3

Triple Spin & Add

You’ll need

★ Triple Spin & Add Record Sheet (Blackline S 3.4, 2 copies per player, run back-to-back)
★ Ten-Strips (Blackline S 1.6, 1 copy per player)
★ Triple Spin & Add Spinner (Blackline S 3.5, 1 copy for every 2 pairs of players)
★ 20 game markers per player
★ paperclip and a pencil to use as a spinner (one set per pair of players)

Instructions for Triple Spin & Add

1. Pick a partner. You should each write your name and today’s date at the top of a record sheet.

2. Take turns spinning a spinner. The player with the lowest number begins.

3. The first player spins all 3 spinners. Both players find the sum of the 3 numbers shown and talk to each other about their strategies. Players can show their thinking using game markers on the ten-strips.
5 Players take turns spinning all 3 spinners. For each spin, both players find the sum and record a number sentence in the correct column. Play continues until one column has 10 number sentences.

6 If there's time, players can turn their pages over to a fresh record sheet and play again.

4 If the sum is odd, both partners record a number sentence in the odd column. If the sum is even, both partners record a number sentence in the even column.
Triple Spin & Add Record Sheet

Write a number sentence for each odd sum you or your partner gets in the odd column. Write a number sentence for each even sum you or your partner gets in the even column. Play a new round when you get 10 number sentences in one of the columns. Which column do you think will get 10 number sentences first?

<table>
<thead>
<tr>
<th>Odd Sums</th>
<th>Even Sums</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Run 1 copy for every 2 pairs of players. Cut in half.
Support Activity 4 ★ Instructional Considerations

Sorting Addition Facts

Overview
Players take turns drawing cards showing addition facts and sorting them by strategy. When they have sorted all the cards, they go back and practice the facts on all the cards.

Skills & Concepts
★ using strategies to develop and demonstrate computational fluency with addition facts to 20

You'll need
★ Addition Strategy Labels (Blackline S 4.3, 1 copy for each pair of players, cut apart and stored in an envelope)
★ Ten-Strip Fact Cards (Blacklines S 4.4–4.8, 1 copy for each pair of players, cut apart and stored in an envelope)

You can adjust this activity to meet students' individual needs by removing the Strategy Labels and Ten-Strip Fact Cards for the facts with which they don't need as much practice or that are still too difficult for them. For example, if a student is frustrated by fast nines and leftovers, you could remove those two Strategy Labels and the corresponding Ten-Strip Fact Cards, allowing the child to focus on doubles, neighbors, make ten, and fast tens until they become more fluent.

Once students are comfortable with this activity, we like to suggest it for homework practice. Many families have a set of flashcards at home, and students can complete this activity using flashcards in place of Ten-Strip Fact Cards. If they don't have flashcards at home, send along a copy of the Ten-Strip Fact Cards. You'll probably want to have students cut out the cards before sending them home. (We like to have students cut out the cards and store them in a large re-sealable plastic bag that also contains the activity instructions, Strategy Labels, and a few copies of the Ten-Strips blackline.) If you do send Sorting Addition Facts home, be sure to send along a copy of Blacklines S 1.7 and 1.8 so parents can refer to them when helping their children.
Support Activity 4

SUPPORT ACTIVITY

Sorting Addition Facts

You’ll need

★ Addition Strategy Labels (Blackline S 4.3, 1 copy for each pair of players, cut apart and stored in an envelope)

★ Ten-Strip Fact Cards (Blacklines S 4.4–4.8, 1 copy for each pair of players, cut apart and stored in an envelope)

Instructions for Sorting Addition Facts

1. Get a deck of Ten-Strip Fact Cards to share, and set out the eight strategy labels.

2. Pick one of the Ten-Strip Fact Cards from the top of the deck. Determine what kind of fact it is and find the sum. Then place the card under the label that shows what kind of fact it is. Talk it over with your partner. Does he or she have another way of thinking about that fact? For example, you might think of $5 + 5$ as a double, but your partner might think of it as a make ten fact.

3. Repeat this process until you have gone through all of the cards. You’ll end up with many cards beneath each label.

4. When all the cards have been sorted, go back and practice all the cards under each strategy label. Make sure you say each fact out loud, for example, “9 plus 6 equals 15.”
Addition Strategy Labels

<table>
<thead>
<tr>
<th>Zero Facts</th>
<th>Counting On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make Ten</td>
<td>Fast Nines</td>
</tr>
<tr>
<td>Neighbors</td>
<td>Doubles</td>
</tr>
<tr>
<td>Fast Tens</td>
<td>Leftover Facts</td>
</tr>
</tbody>
</table>

Blackline S 4.3 Addition Strategy Label

Build computational fluency. Run 1 copy for each pair of players. Cut out along lines and store in an envelope.
Ten-Strip Fact Cards page 1 of 5

Run 1 copy for each pair of players. Cut out along lines and store in an envelope.
Ten-Strip Fact Cards page 2 of 5

Building Comptational Fluency Blackline S 4.5 Run 1 copy for each pair of players. Cut out along lines and store in an envelope.
Ten-Strip Fact Cards page 3 of 5

<table>
<thead>
<tr>
<th>Blackline S 4.6 Ten-Strip Fact Card</th>
<th>Blackline S 4.6 Ten-Strip Fact Card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackline S 4.6 Ten-Strip Fact Card</td>
<td>Blackline S 4.6 Ten-Strip Fact Card</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackline S 4.6 Ten-Strip Fact Card</td>
<td>Blackline S 4.6 Ten-Strip Fact Card</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackline S 4.6 Ten-Strip Fact Card</td>
<td>Blackline S 4.6 Ten-Strip Fact Card</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackline S 4.6 Ten-Strip Fact Card</td>
<td>Blackline S 4.6 Ten-Strip Fact Card</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building Comptational Fluency Blackline S 4.6 Run 1 copy for each pair of players. Cut out along lines and store in an envelope.
Ten-Strip Fact Cards page 4 of 5

<table>
<thead>
<tr>
<th>Ten-Strip Fact Card</th>
<th>Ten-Strip Fact Card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building Computational Fluency Blackline S 4.7 Run 1 copy for each pair of players. Cut out along lines and store in an envelope.
Ten-Strip Fact Cards page 5 of 5

<table>
<thead>
<tr>
<th>Blackline S 4.8 Ten-Strip Fact Card</th>
<th>Blackline S 4.8 Ten-Strip Fact Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔵🔴</td>
<td>🔵🔴</td>
</tr>
</tbody>
</table>

Building Computational Fluency Blackline S 4.8 Run 1 copy for each pair of players. Cut out along lines and store in an envelope.
Support Activity 5 ★ Instructional Considerations

SUPPORT ACTIVITY

Make Half

Overview
Players take turns spinning a number from 1 to 10. They determine what number that number is half of and then uncover that number on their side of the game board. The first player to uncover all the even numbers from 2 to 20 wins.

Skills & Concepts
★ using models for subtraction combinations
★ fluency with the subtraction half facts

You'll need
★ Doubles Spin & Make Half Game Board (Blacklines S 1.3 and 1.4, 1 copy of each, taped together, per pair of players)
★ Doubles & Halves Spinner (Blackline S 1.5, 1 copy for every 2 pairs of players)
★ 10 game markers per player
★ paperclip and a pencil to use as a spinner (one set per pair of players)

Students' fluency with half facts relies on their understanding of doubles. If you find this game frustrating for students, have them go back to Doubles Roll for a warm-up.
Support Activity 5

Make Half

You’ll need

★ Doubles Spin & Make Half Game Board (Blacklines S 1.3 and 1.4, 1 copy of each, taped together, per pair of players)
★ Doubles & Halves Spinner (Blackline S 1.5, 1 copy for every 2 pairs of players)
★ 10 game markers per player
★ paperclip and a pencil to use as a spinner (one set per pair of players)

Instructions for Make Half

1. Get a partner and sit on opposite sides of the game board. Put a marker on each number on your side of the game board.

2. Take turns spinning the spinner. Identify the number as half of one of the numbers on your game board, and take the marker off that number. If the number is already uncovered, you’ll have to pass.

3. The player who uncovers all of his or her numbers first is the winner.

For example, if you got a 2, you’d say, “Two is half of four,” and uncover the 4 on your side of the game board. If you had already removed the marker from the 4, you would pass, and your partner would get his or her turn.
Support Activity 6 ★ Instructional Considerations

SUPPORT ACTIVITY

Spinning Around Subtraction

Overview
Players take turns spinning subtraction facts and naming the strategies that could be used to solve them. They pick one strategy for each fact and write a number sentence in the column labeled with that strategy name. The first player to record at least one fact in each column wins.

Skills & Concepts
★ using models to solve subtraction facts with minuends to 20
★ fluency with the half facts, run away ones, up to ten, and leftover subtraction facts

While they play, encourage students to show how they found the differences using game markers on the ten-strips, especially for up to ten and leftover facts. When students focus on the strategies they’re using to solve these subtraction facts and connect those strategies to the visual model, they become increasingly aware of the relationships between numbers. This focused practice builds computational fluency and flexibility.

The game of Spinning Around Subtraction focuses on four groups of subtraction facts: half facts, run away ones, up to ten facts, and leftover facts. Students may be familiar with these groups of facts, but we’ve included the following descriptions of them for your information.

You’ll need
★ Ten-Strips (Blackline S 1.6, 1 copy per player)
★ Spinning Around Subtraction Record Sheet (Blackline S 6.6, 1 copy per player)
★ Spinning Around Subtraction Spinner (Blackline S 6.5, 1 copy for every 2 pairs of players)
★ 20 game markers per player
★ pencil and paperclip to use as a spinner (1 set per pair of players)
Half Facts
A half fact is any fact in which the number being subtracted is half of the larger number. For example, $10 - 5 = 5$ is a half fact, because 5 is half of 10. $12 - 6 = 6$ is another half fact because 6 is half of 12. Students will begin to notice that with half facts, the difference and the number being taken away are equal.

Run Away Ones
These are facts in which the ones are subtracted from a teen number. The difference is always 10. Some examples of run away ones facts are $13 - 3 = 10$ and $17 - 7 = 10$.

Up to Ten
An up to ten fact is any fact in which 4, 5, 6, 7, 8, or 9 is subtracted from a number that is equal to or greater than 10. It capitalizes on children's natural inclination to count upward from the number being subtracted to find the answer. Counting up to ten and then on to the larger number is most useful when the number in the ones place of the minuend (the larger number) is less than the subtrahend (the smaller number). The following are both examples of up to ten facts:

\[
\begin{align*}
12 - 7 & = 5 \\
15 - 8 & = 7
\end{align*}
\]

“If I go up from 7 to 10, that's 3. Then 2 more gets me to 12. So I added 5 altogether. 12 minus 7 is 5.”

“If I go up from 8 to 10, that's 2. Then 5 more gets me to 15. So I added 7 altogether. 15 minus 8 is 7.”

Leftover Facts
The leftover facts are facts that don't fit into the categories above. Students will use their own strategies or combinations of familiar strategies to solve them.
Support Activity 6

Spinning Around Subtraction

You’ll need

★ Ten-Strips (Blackline S 1.6, 1 copy per player)
★ Spinning Around Subtraction Record Sheet (Blackline S 6.6, 1 copy per player)
★ Spinning Around Subtraction Spinner (Blackline S 6.5, 1 copy for every 2 pairs of players)
★ 20 game markers per player
★ pencil and paperclip to use as a spinner (1 set per pair of players)

Instructions for Spinning Around Subtraction

1 Each player needs a copy of the ten-strips, game markers, and a record sheet with his or her name and today’s date.

2 The first player spins both spinners and figures out what kind of subtraction fact is shown. Players can help each other if they can’t remember what kind of fact it is.

Omar 12 minus 8. Hmm, I think that’s an up to ten fact. Those are hard to remember, though.

Leela I think you’re right Omar. We’ll go from 8 up to 10 and then from 10 to 12.

The player uses game markers to build the fact on his ten-strips and explains to his partner how he would find the difference.
Support Activity 6 (cont.)

Omar I put down 8 markers and then I added 2 more. 8 plus 2 makes 10, and then I need just 2 more to equal 12. See, the 8 is blue, and then the red markers show what the difference is. It’s 4. So 12 minus 8 is 4.

3 The player writes the number sentence for that fact in the appropriate column. Some facts might be more than one kind of fact. For example, 12 – 6 could be a half fact or an up to ten fact. Players can choose the column in which they want to write those facts.

4 The player who completes a row across first wins. A player might have more than one fact in each box before she is able to write at least one fact in every box.

5 Play 3 rounds.
Spinning Around Subtraction Spinner

![Subtraction Spinner Diagram]

Spinning Around Subtraction Spinner

![Subtraction Spinner Diagram]
Spinning Around Subtraction Record Sheet

<table>
<thead>
<tr>
<th>Round 3</th>
<th>Round 2</th>
<th>Round 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leftovers</td>
<td>Up to Ten</td>
<td>Half Facts</td>
</tr>
<tr>
<td>Run Away Ones</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Run 1 copy per player.
Support Activity 7 ★ Instructional Considerations

Make 100

Overview
Players take turns drawing cards showing double-digit numbers and coloring the numbers on a Number Chart. Each player can draw no more than 3 cards. Players find their sums, and the player closest to 100 (over or under) wins.

Skills & Concepts
★ using models, words, and numbers to demonstrate the meaning of addition and subtraction
★ adding and subtracting 2-digit numbers with and without regrouping using models and strategies

You'll need
★ Make 100 Record Sheet (Blackline S 7.4, 2 copies run back-to-back per player)
★ Make 100 Cards, pages 1–3 (Blacklines S 7.5–7.7, 1 copy, cut apart, for each pair of players)
★ crayons

Make 100 provides students with more opportunities to add 2-digit numbers and use a visual model to find the difference between 100 and other numbers. Students also use estimation skills when they choose whether or not to take a third card.

Although there are many different ways to color in the amounts, we prefer to model coloring in the 10's first and then the 1's. Remind students to fill in the Number Chart completely before they use the 10's and 1's on the side so they can see their total in relationship to 100.
Support Activity 7

Make 100

You’ll need

★ Make 100 Record Sheet (Blackline S 7.4, 2 copies run back-to-back per player)
★ Make 100 Cards, pages 1–3 (Blacklines S 7.5–7.7, 1 copy, cut apart, for each pair of players)
★ crayons

Instructions for Make 100

1 Mix up the Make 100 Cards and place them in a pile, face down. Write your name and your partner’s name at the top of a record sheet. The goal of Make 100 is to be the player who gets closest to 100. You can stay under 100 or go over 100.

2 Take 2 cards and turn them face up. Both players should record the two numbers in the boxes below the Number Chart and color in the amounts on the chart. Use a different color for each amount.

3 The other player takes 2 cards. Both players record the numbers in the boxes and color in the amounts on their Number Charts.

4 Both players should decide whether or not to draw a third card. If you’re close to 100, you may choose not to draw another card. If you’re still far away from 100, you might take a chance and draw a third card. Each player may draw no more than 3 cards.
5. If you draw a third card, write the number below the Number Chart and then color in that amount in a new color on the Number Chart. Be sure to color in the entire grid before you use the 10’s and 1’s pictured to the right. Those are there in case you go over 100.

6. Add up the totals and compare to see who came closest to 100. Circle the winner, turn the record sheet over, and play again.
Make 100 Record Sheet

Player 1

Player 2

+ =

My partner was under 100 / over 100 by (circle one)

I was under 100 / over 100 by (circle one)

Run 2 copies back-to-back for each player.
Make 100 Cards page 1 of 3

Run 1 copy for each pair of players. Cut cards apart and store in an envelope.
Make 100 Cards page 2 of 3

Run 1 copy for each pair of players. Cut cards apart and store in an envelope.
Run 1 copy for each pair of players. Cut cards apart and store in an envelope.
Support Activity 8 ★ Instructional Considerations

SUPPORT ACTIVITY

Race to 100 & Back

Overview
Players take turns spinning two single-digit numbers, adding them together, and adding that total to their collections of base ten pieces. Players add to their collections until they reach 100 when they begin subtracting each total from their collections. The first player to make it back to 0 wins.

Skills & Concepts
★ using models, words, and numbers to demonstrate the meaning of addition and subtraction
★ adding and subtracting 2-digit numbers with and without regrouping using models and strategies

You’ll need
★ Race to 100 & Back Spinner (Blackline S 8.5, 1 copy for every 2 pairs of players)
★ 1 set of base ten pieces for each pair of players (Use Blacklines S 8.6 and 8.7 to make your own base ten pieces if needed.)
★ paperclip and pencil for use as a spinner (1 set for each pair of players)

Most third graders, especially with use of the base ten pieces, will find addition with regrouping easier than subtraction with regrouping. For example, when students are asked to remove 18 from a collection of 62, many will take 10 away but ponder how to get 8 more from the remaining 52. With some encouragement, a student might trade 1 ten for 10 ones and then remove 8 of them, leaving 4 tens and 4 ones altogether. Another student might simply remove a ten and then put 2 ones back into the collection, in effect making the trade and subtracting at the same time.

Encourage students to explain their strategies and reasoning as they use the pieces to complete the computations. Do not press students to use symbolic recording or teach them the traditional algorithm for regrouping. Simply invite students to show and tell you what they are thinking, at which point you may show them the symbolic notation that goes along with their strategy as shown below.

-10
- 8

62 – 10 = 52
52 – 8 = 44
Teacher So I notice that you took away 2 tens and then put 2 ones back in. Can you tell me what you were thinking?

Andre Well, I know 18 is like 10 plus 8. So first I took 1 ten away from 62.

Teacher Ah, I see. I'll write what I'm hearing you say in numbers. Okay, you said 18 is like 10 and 8. So I'll write 18 equals 10 plus 8. And then you took that 10 away from 62, so I'll write 62 minus 10 equals 52.

\[
\begin{align*}
18 &= 10 + 8 \\
62 - 10 &= 52
\end{align*}
\]

Okay, then what did you do next and why? I'll keep writing these number sentences to show what I hear you saying.

Andre Well, then I needed to take away 8 more. I couldn't do that, because all I had was 52. So I took away 10. That was 2 too many, so I put 2 ones back in.

\[
\begin{align*}
52 - 10 &= 42 \\
42 + 2 &= 44
\end{align*}
\]
Support Activity 8

Race to 100 & Back

You’ll need

- Race to 100 & Back Spinner (Blackline S 8.5, 1 copy for every 2 pairs of players)
- 1 set of base ten pieces for each pair of players (Use Blacklines S 8.6 and 8.7 to make your own base ten pieces if needed.)
- paperclip and pencil for use as a spinner (1 set for each pair of players)

Instructions for Race to 100 & Back

1. You and your partner each need 1 hundred, 10 tens, and 20 ones from the set of base ten pieces. You’ll share a pair of spinners and will use a pencil and paperclip as a spinner.

2. Take turns spinning the spinners, adding the 2 numbers, and getting that many tens and ones from your collection of base ten pieces. Each time you collect ten or more ones, trade them in for another ten, and set the ten on top of the hundred piece. Keep the ones off to the side.

3. Continue taking turns spinning and adding to your collections. When you or your partner reaches 100 or goes over 100, you’ll get to start subtracting each sum from your collection. For example, if you had 94 and your partner had 87 and you spun the sum 13, you would collect 1 ten and 3 ones for a total of 107. The next time you
have a turn, you’ll start subtracting each sum from your collection, but your partner will have to keep adding until she gets up to 100. When she does, or when she goes over 100, she can begin subtracting pieces too.

“I got 8 plus 8. That’s 16. So I’ll take away a ten and then 6 of these ones. So I have 91 left.”

4 Continue playing until you get to 9 or fewer units. At that time, use just one spinner to get to 0. The first player to get exactly to 0 wins the game.
Race to 100 & Back Spinner

Race to 100 & Back Spinner
Base Ten Pieces page 1 of 2
Run 2 copies on cardstock for each student. Cut out along dark lines.

Base Ten Pieces page 2 of 2
Support Activity 9 ★ Instructional Considerations

SUPPORT ACTIVITY

Three Turns to Win

Overview
Each player gets 3 spins to generate a collection of mixed coins. The players determine how much money they have each collected. The player with the most money wins.

Skills & Concepts
- counting, adding, subtracting, and estimating money amounts up to $5
- counting by 1’s, 5’s, 10’s, and 25’s
- adding and subtracting 2- and 3-digit numbers

You’ll need
- Three Turns to Win Game Board (Blackline S 9.3, 1 copy for each pair of players)
- 1 set of money value pieces for each pair of players
 (Use Blacklines S 9.4–9.6 to make your own money value pieces if needed.)
- 1 money kit for each player (containing real or plastic and paper money)
- pencil and paperclip to use as a spinner (one set for each pair of players)

As you play this game with the student, invite her to tell you how much money she has so far. You can also ask her to compare her collection to yours. First, ask her to estimate who has more money and about how much more that player has. Then, ask her to find the exact difference between the two collections.

Some students may not be ready to compare the collections as they play this game. If a student is having trouble, give him a set of money value pieces to keep track of how much money you and he collect. Each money value piece shows the coin and its value together. Students who are struggling often find it easier to understand the value of money when it is represented on this visual model.
Support Activity 9

Three Turns to Win

You’ll need

★ Three Turns to Win Game Board (Blackline S 9.3, 1 copy for each pair of players)
★ 1 set of money value pieces for each pair of players (Use Blacklines S 9.4–9.6 to make your own money value pieces if needed.)
★ 1 money kit for each player (containing real or plastic and paper money)
★ pencil and paperclip to use as a spinner (one set for each pair of players)

Instructions for Three Turns to Win

1 Get your own money kit and a game board to share.

2 Take turns spinning both spinners. They will tell you how many and what kind of coin to collect. Place those coins in the appropriate box. You have a separate box for each spin.

3 When both players have taken 3 turns, find the total value of each player’s coin collection. Then compare the collections. Who has more money? How much more money does he or she have than the other player?
Three Turns to Win Game Board

Player 1
First Spin
Second Spin
Third Spin

Player 2
First Spin
Second Spin
Third Spin

Run 1 copy for each pair of players.
Money Value Pieces page 1 of 3
Money Value Pieces page 2 of 3

Run 2 copies on cardstock for each pair of players. Cut out along solid lines.
Money Value Pieces page 3 of 3

Run 2 copies on cardstock for each pair of players. Cut out along solid lines.
Support Activity 10 ★ Instructional Considerations

Finish with $4

Overview
In this narrative game, players each begin with $2 and travel around a game board where each space has them add or subtract money to or from their collections. The first player to make it around the board with at least $4 wins.

Skills & Concepts
★ counting, adding, subtracting, and estimating money amounts up to $5
★ identifying and applying the operation needed to solve a problem
★ using models, pictures, and/or numbers to demonstrate the meaning of addition and subtraction
★ translating problem-solving situations into expressions and equations

You'll need
★ Finish with $4 Game Board (Blacklines S 10.3 and 10.4, 1 copy of each page taped together for each pair of players)
★ 1 set of money value pieces for each pair of players (Use Blacklines S 9.4–9.6 to make your own money value pieces if needed.)
★ 1 game marker for each player
★ pencil and paperclip to use as a spinner (1 set for each pair of players)
★ money kits (1 for each player or pair of players)
★ pencil and scratch paper for writing number sentences and computing

Encourage students to keep track of their money during this game using real or plastic and paper coins and bills. Some students might prefer to use the money value pieces to keep track of their money.

This game is not meant to be a test of students' reading skills. Encourage them to read the words on their own, but don't hesitate to read out loud for them if needed. Each time you or the student lands on a new space, invite the student to explain what's happening. Will she add money to her collection or subtract money from her collection? How could the problem be written as a number sentence? We want students to develop the ability to translate situations into appropriate and meaningful mathematical problems.
Support Activity 10

Finish with $4

You’ll need

★ Finish with $4 Game Board (Blacklines S 10.3 and 10.4, 1 copy of each page taped together for each pair of players)

★ 1 set of money value pieces for each pair of players (Use Blacklines S 9.4–9.6 to make your own money value pieces if needed.)

★ 1 game marker for each player

★ pencil and paperclip to use as a spinner (1 set for each pair of players)

★ money kits (1 for each player or pair of players)

★ pencil and scratch paper for writing number sentences and computing

Instructions for Finish with $4

1. Begin by placing your game markers on the start space. Each player begins with $2.00.

2. Take turns spinning the spinner. The player with the higher spin goes first.

3. Take turns spinning the spinner and moving ahead. Whenever a player lands on a space, he reads the words and decides whether he should add money to his collection or take money away from his collection. He decides what the problem is and shows it with a number sentence.

4. Players keep track of their money using coins and bills, numbers, or money value pieces if they have them.

5. The first player to get to the last space with at least $4.00 wins.
Finish with $4 Game Board page 1 of 2

START
Begin with $2.00.

You find a quarter on the ground and pick it up.

Your brother pays back the 85¢ he borrowed from you.

STOP
Do you have $4.00 or more? If so, you win! If not, keep going.

You find 3 quarters and 4 dimes in your jacket pocket.

You unload the laundry and find 2 quarters, 4 dimes, and 2 nickels.

You find a 10¢ in a pay phone slot.

Your mom gives you $1.50 for your allowance.

You earn $1.85 for washing the dishes.
Finish with $4 Game Board page 2 of 2

- You drop 50¢ on the ground.
- You buy an apple for 25¢.
- Your neighbor pays you $1.00 for feeding his cat.
- Your grandpa gives you $1.65 as a gift.
- You buy a candy bar for $0.55.
- You find 2 quarters and a nickel on the sidewalk.
- You buy a pack of gum for $0.45.

Move ahead

spaces
Support Activity 11 ★ Instructional Considerations

Count Down 400

Overview
Players subtract 4 two-digit numbers from 400 using Number Charts as a visual model. The player who gets closest to 0 after 4 turns wins.

Skills & Concepts
★ subtracting with and without regrouping using models and a variety of efficient paper/pencil and mental strategies
★ using estimation strategies to solve problems

You’ll need
★ Count Down 400 (Blackline S 11.3, 1 copy per player)
★ Count Down 400 Spinner (Blackline S 11.4, 1 copy for every two pairs of players)
★ base ten pieces (optional) (Use Blacklines S 8.6 and 8.7 to make your own base ten pieces if needed.)
★ pencil and paperclip to use as a spinner (1 set for each pair of players)
★ colored pencils or crayons in 4 colors

Before students actually compute the difference between 400 and the number they spun, remind them to estimate a reasonable answer and explain their thinking. They can use base ten pieces or any paper/pencil or mental math strategies they prefer to compute the difference. Then, ask them to check their thinking using the grids on the record sheets.
Support Activity 11

Count Down 400

You’ll need

★ Count Down 400 (Blackline S 11.3, 1 copy per player)

★ Count Down 400 Spinner (Blackline S 11.4, 1 copy for every two pairs of players)

★ base ten pieces (optional) (Use Blacklines S 8.6 and 8.7 to make your own base ten pieces if needed.)

★ pencil and paperclip to use as a spinner (1 set for each pair of players)

★ colored pencils or crayons in 4 colors

Instructions for Count Down 400

1 You and your partner will each get your own record sheets. You’ll share a spinner.

2 Spin both spinners and arrange the 2 numbers to make the largest 2-digit number you can. Estimate how much you'll have left when you subtract that number from 400.

3 Subtract your number from 400. Sketch the amount you subtracted on the grids and record a number sentence to show what's left. (See illustration.)

4 Now it's your partner's turn. Share your computation strategies and double-check each other's work. Use the base ten pieces if you'd like. Record each turn in a different color crayon or pencil on the grids.

5 After 4 turns, compare how much you both have left on your grids. Estimate and then compute the difference. Share your thinking. The player who is closest to 0 after 4 turns wins the game.
Count Down 400 Spinner

Count Down 400 Spinner
Support Activity 12 ★ Instructional Considerations

Faces of a Solid

Overview
Students match 2-dimensional shapes to 3-dimensional solids that have 1 or more faces of that shape.

Skills & Concepts
★ recognizing, describing, and comparing a variety of 2- and 3-dimensional shapes
★ classifying a variety of 3-dimensional figures by their faces

You’ll need
★ Faces Spinner (Blackline S 12.3, 1 copy for every 2 pairs of players)
★ Solids Cards (Blackline S 12.4, 1 copy per player, cut apart)
★ pencil and paperclip to use as spinner (1 set for each pair of players)
★ set of geoblocks

Make geoblocks available for students to use during this activity. When considering the properties of solid figures, students need to see and hold those figures. We’ve provided the following key of shape names and matches for your convenience. Let students know that the size and shape of the faces may not match the solids exactly. For example, when they spin the triangle face, they can turn over the card for a solid with any triangular face.

Key of Solid Names

Key of Faces and Solids Matches
Support Activity 12

SUPPORT ACTIVITY

Faces of a Solid

You’ll need

★ Faces Spinner (Blackline S 12.3, 1 copy for every 2 pairs of players)
★ Solids Cards (Blackline S 12.4, 1 copy per player, cut apart)
★ pencil and paperclip to use as spinner (1 set for each pair of players)
★ set of geoblocks

Instructions for Faces of a Solid

1 You and your partner should each cut out your solid cards and set them out face up in front of you.

2 Spin the spinner. Name the shape on the spinner. Identify a solid that has the same face as your spin, name the solid, and then turn over that card. You may only turn over one card per spin.

3 Now it’s your partner’s turn. Continue to spin, name the shape, and turn over a card. If you spin a face you no longer have a card for, you miss that turn.

4 The first person to turn over all 6 solid cards wins the game.
Faces Spinner

Faces Spinner
Solids Cards
Support Activity 13 ★ Instructional Considerations

Spinning Around Multiplication

Overview
Players take turns spinning multiplication facts and naming the strategies that could be used to solve them. They pick one strategy for each fact and write a number sentence in the column labeled with that strategy name. The first player to record at least one fact in each column wins.

Skills & Concepts
★ demonstrating computational fluency with multiplication facts up to 6 x 6
★ using models, words, and/or numbers to demonstrate an understanding of multiplication as repeated addition, equal groups of objects, arrays, or skip counting

Consult the table of multiplication strategies if you need to review how these strategies work.

<table>
<thead>
<tr>
<th>MULTIPLICATION STRATEGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
</tr>
<tr>
<td>1 x 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2 x 2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3 x 3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4 x 4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5 x 5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 x 6</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

When students focus on the strategies they are using to solve these multiplication facts, they become increasingly aware of important patterns and relationships. This focused practice using equal groups of objects, the array model, and skip counting builds computational fluency.
When categorizing their facts to arrange them in columns on the record sheet, students will employ the commutative property of multiplication (\(4 \times 3 = 3 \times 4\)).

"3 times 4. I already have a 3 fact, so I should put this one in my double-double column. I can do that because 3 times 4 is the same as 4 times 3."

Make grid paper available for students who would like to draw the arrays for these multiplication facts.
Support Activity 13

Support Activity

Spinning Around Multiplication

You’ll need

★ Spinning Around Multiplication Spinner (Blackline S 13.4, 1 copy for every 2 pairs of players)
★ Spinning Around Multiplication Record Sheets (Blackline S 13.5, 1 copy per player)
★ Grid Paper (Blackline S 13.6, a few copies per player, optional)

Instructions for Spinning Around Multiplication

1. Each player needs a record sheet and grid paper. You’ll share a spinner.
2. Spin both spinners and multiply the numbers. You can draw arrays on the grid paper to help. Explain to your partner how you think about this multiplication fact. Do you use arrays, repeated addition, skip counting, or other multiplication facts to find the product?
3. Write the number sentence in the appropriate column on your record sheet. For example, 2 × 5 is a doubles fact and a clock fact. You can choose the column you want to write the fact in.
4. The first person to complete a row across wins. You might have more than one fact in each box before you are able to write at least one fact in every box.
5. Play 3 rounds.
Spinning Around Multiplication Spinner

6 5 4
3 2 1

1 2 3
4 5 6

×

3 4
2 1
5 6

Spinning Around Multiplication Spinner

1 2 3
4 5 6

×

1 2 4 5

1 2 4 5
<table>
<thead>
<tr>
<th>Round 3</th>
<th>Round 2</th>
<th>Round 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Facts x6</td>
<td>Clock Facts x5</td>
<td>Clock Facts x4</td>
</tr>
<tr>
<td>Plus 1 Set</td>
<td>Doubles x3</td>
<td>Double-Doubles x2</td>
</tr>
<tr>
<td>Ones Facts x1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Support Activity 14 ★ Instructional Considerations

Show the Sum

Overview
Players take turns spinning to get two 3-digit numbers each. Each player finds the sum of his or her numbers. The player with the larger sum wins.

Skills & Concepts
★ reading, writing, and ordering whole numbers up to 1,000
★ modeling and comparing place value positions in numbers up to 1,000
★ using <, >, and = symbols with whole numbers
★ composing and decomposing numbers by place value and using expanded notation to represent numbers
★ adding 3-digit numbers with and without regrouping
★ using models, numbers, and words to solve addition problems

You’ll need
★ Show the Sum Record Sheets (Blackline S 14.3, a few copies per player run back-to-back)
★ pencil and paperclip for use as a spinner (1 set for each pair of players)
★ scratch paper

Some students may use sketches to solve the 3-digit addition problems in Show the Sum. While students’ sketches often demonstrate their understanding of place value and computation strategies, we want third graders to have developed efficient strategies for completing these kinds of calculations. Toward that end, encourage students who are working with sketches first to use numbers to label their sketches and then to complete the calculations without the sketches, imagining the visual models in their minds’ eye if needed.

Some students may calculate the total of the 100’s, 10’s, and 1’s, from left to right, and then add the total for each place value. This method is based on a solid sense of place value and should not be discouraged. Other students may elect to use the traditional algorithm for adding 3-digit numbers because they find it an efficient and reliable method. If so, ask them to explain the regrouping process so you can be sure they understand what they are doing and why. If they are thinking about the numbers as single digits only—and not as a certain number of 100’s, 10’s, or 1’s—ask them to model the procedure with a base ten sketch and explain the regrouping process. You might also ask them to think of another way to find the sum.

Encourage students to make estimates throughout the game of Show the Sum. Because they compose each three-digit number by place value to start, students tend to maintain their sense of number size throughout this game. If they have difficulty making reasonable estimates, encourage them to identify the number of 100’s and 10’s in each number and then estimate the result of combining them.
Support Activity 14

Show the Sum

You’ll need

★ Show the Sum Record Sheets (Blackline S 14.3, a few copies per player run back-to-back)
★ pencil and paperclip for use as a spinner (1 set for each pair of players)
★ scratch paper

Instructions for Show the Sum

1 Players take turns spinning the three spinners and adding the numbers to get a 3-digit number. Each player spins two times to get two 3-digit numbers. Players may record their 3-digit numbers using numbers and/or sketches of base ten pieces, whichever they prefer. The example below shows players using both numbers and sketches.

2 When both players have two 3-digit numbers, they add them together. Before adding, players estimate whose sum will be more and whose sum will be less. Players may also estimate what their specific sum will be.

3 Players talk about how they added their numbers and check each other’s work.

4 Players compare their sums and write a number sentence at the bottom of the record sheet to show whose sum is greater. The player with the greater sum wins.
Show the Sum Record Sheet

Player 1

1st number

2nd number

Sum

Player 2

1st number

2nd number

Sum

greater than \(> \) equals \(= \) less than \(< \)
Support Activity 15 ★ Instructional Considerations

Show the Difference

Overview
Players take turns spinning to get two 3-digit numbers each. Each player finds the difference between his or her numbers. The player with the larger difference wins.

Skills & Concepts
★ reading, writing, and ordering whole numbers up to 1,000
★ modeling and comparing place value positions in numbers up to 1,000
★ using <, >, and = symbols with whole numbers
★ composing and decomposing numbers by place value and using expanded notation to represent numbers
★ subtracting 3-digit numbers with and without regrouping
★ using models, numbers, and words to solve subtraction problems

You’ll need
★ Show the Difference Record Sheet (Blackline S 15.3, a few copies per player run back-to-back)
★ pencil and paperclip for use as a spinner (1 set for each pair of players)
★ scratch paper

Some students may use sketches to solve the 3-digit subtraction problems in Show the Difference. While students’ sketches often demonstrate their understanding of place value and computation strategies, we want third graders to have developed efficient strategies for completing these kinds of calculations. Toward that end, encourage students who are working with sketches first to use numbers to label their sketches and then to complete the calculations without the sketches, imagining the visual models in their minds’ eye if needed.

Students may elect to use the traditional algorithm for subtracting 3-digit numbers because they find it an efficient and reliable method. If so, ask them to explain the process of decomposing so you can be sure they understand what they are doing and why. If they are thinking about the numbers as digits only—and not as a certain number of 100’s, 10’s, or 1’s—ask them to model the procedure with a base ten sketch and explain the process of decomposing 100’s into 10’s and 10’s into 1’s. You might also ask them to think of another way to find the difference.

Encourage students to make estimates throughout the game of Show the Difference. Because they compose each 3-digit number by place value to start, students tend to maintain their sense of number size throughout this game. If they have difficulty making reasonable estimates, encourage them to identify the number of 100’s and 10’s in each number and then estimate the result of subtracting one number from the other or estimate the difference between the numbers.
Support Activity 15

Show the Difference

You'll need

★ Show the Difference Record Sheet (Blackline S 15.3, a few copies per player run back-to-back)
★ pencil and paperclip for use as a spinner (1 set for each pair of players)
★ scratch paper

Instructions for Show the Difference

1 Players take turns spinning the 3 spinners and adding the numbers to get a 3-digit number. Each player spins 2 times to get two 3-digit numbers. Players may record their 3-digit numbers using numbers and/or sketches of base ten pieces, whichever they prefer. (The example to the right shows players using both numbers and sketches.)

2 When both players have two 3-digit numbers, they find the difference between the 2 numbers. Before subtracting, players estimate whose difference will be more and whose will be less. Players may also estimate what their specific difference will be.

3 Players talk about how they found the difference between their numbers and check each other's work.

4 Players compare their differences and write a number sentence at the bottom of the record sheet to show whose difference is greater. The player with the greater difference wins.
Building Computational Fluency Blackline S 15.3 Run a few copies back-to-back for each player.

Show the Difference Record Sheet

Player 1

1st number

2nd number

Difference

Player 2

1st number

2nd number

Difference

greater than equals less than
> = <
Support Activity 16 ★ Instructional Considerations

What’s Missing? Bingo

Overview
Players take turns drawing cards featuring incomplete multiplication or division equations. The player solves for the unknown quantity in the equation and then both players cover that number on their bingo boards. The first player to cover 3 numbers in a row (horizontal, vertical, or diagonal) wins.

Skills & Concepts
★ using models, pictures, and numbers to demonstrate an understanding of multiplication/division as repeated addition/subtraction, equal groups of objects, arrays, or skip counting
★ demonstrating computational fluency with multiplication facts up to 5 × 10
★ developing and using strategies for multiplication facts up to 10 × 10
★ solving for an unknown number in an equation

You’ll need
★ What’s Missing? Bingo Cards (Blacklines S 16.4 and 16.5, 1 copy on cardstock for each pair of players, cut apart and stored in an envelope)
★ What’s Missing? Bingo Boards (Blackline S 16.6, 1 copy for each pair of players)
★ Small Number Charts (Blackline S 17.6, a few copies for each player)
★ 9 red and 9 blue game markers or 9 each of 2 different kinds of beans, cereal pieces, or coins to use as game markers

What’s Missing? Bingo challenges students to work with their multiplication and division facts and prompts them to consider the relationship between the two operations. For example, to solve for the unknown in the equation 40 ÷ □ = 8, a student might ask herself, “What times 8 equals 40?” Another student might fill in columns of 8 until he has created an array of 40 squares and then check his horizontal dimension to find the unknown.

“First I colored a column of 8. Then I just kept going with more columns until I had colored 40 altogether. I had to make 5 columns of 8, so that means 40 divided by 8 is 5 and 40 divided by 5 is 8.”
As they play What's Missing? Bingo, press students to make use of these relationships to solve for each unknown. Be sure to make the small Number Charts available to them, and feel free to use only the multiplication cards if the division cards are too challenging at this time.
Support Activity 16

What’s Missing? Bingo

You’ll need

★ What’s Missing? Bingo Cards (Blacklines S 16.4 and 16.5, 1 copy on cardstock for each pair of players, cut apart and stored in an envelope)

★ What’s Missing? Bingo Boards (Blackline S 16.6, 1 copy for each pair of players)

★ Small Number Charts (Blackline S 17.6, a few copies for each player)

★ 9 red and 9 blue game markers or 9 each of 2 different kinds of beans, cereal pieces, or coins to use as game markers

Instructions for What’s Missing? Bingo

1. Decide whether you will play with the multiplication cards, the division cards, or both. Place the cards you want to use in a stack face down. Assign each player a set of game markers and one of the two game boards on the sheet. (Players share a sheet.)

2. Take turns drawing the top card from the stack. Identify the missing number that would make the number sentence on the card true. Explain how you know that number would make the number sentence true. Use the small Number Charts if they help you.

3. Both players place a game marker on that number on their game boards.

4. Continue taking turns until one player has covered three numbers in a row horizontally, vertically, or diagonally.

“The card says, ‘Something divided by 3 equals 2.’ What divided by 3 equals 2? That was hard for me to think about, so instead I thought 2 times 3 is 6, so 6 divided by 3 equals 2. The answer is 6 because it makes the number sentence true.”
What’s Missing? Bingo Cards

<table>
<thead>
<tr>
<th>9 x</th>
<th>= 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x</td>
<td>= 30</td>
</tr>
<tr>
<td>x 8</td>
<td>= 32</td>
</tr>
<tr>
<td>x 3</td>
<td>= 24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x 7</th>
<th>= 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 7</td>
<td>= 49</td>
</tr>
<tr>
<td>x 5</td>
<td>= 25</td>
</tr>
<tr>
<td>6 x</td>
<td>= 54</td>
</tr>
</tbody>
</table>
What's Missing? Bingo Cards

<table>
<thead>
<tr>
<th>Equation</th>
<th>Blank</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8 \times \square = 80$</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>$12 \div \square = 3$</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>$14 \div \square = 2$</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>$32 \div \square = 4$</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>$40 \div \square = 8$</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>$\square \div 3 = 2$</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>$\square \div 5 = 2$</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
What's Missing? Bingo Boards

Board A

2 6 4
3 5 9
4 8 7

Board B

2 6 4
3 5 9
4 8 7
Support Activity 17 ★ Instructional Considerations

Ten to Win

Overview
Players take turns spinning to get 2 single-digit numbers. They multiply those numbers and cover the products on their game boards. If a product has already been covered, the player loses that turn. The first player to cover 10 products on the board wins.

Skills & Concepts
★ using models, words, and numbers to demonstrate an understanding of multiplication
★ demonstrating computational fluency with multiplication facts

You’ll need
★ Ten to Win Spinner (Blackline S 17.4, 1 copy cut in half for every 2 pairs of players)
★ Ten to Win Game Boards (Blackline S 17.5, a few copies for each pair of players run back-to-back)
★ Small Number Charts (Blackline S 17.6, a few copies run back-to-back per player)
★ pencil and paperclip to use as a spinner (1 set for each pair of players)
★ 10 red or 10 blue game markers or 10 each of two different kinds of beans, cereal pieces, or coins to use as game markers (optional)

Playing Ten to Win is a fun way for students to practice some of the more difficult multiplication facts. Students may be able to recall many of the products, but they’ll likely have to think through a few of the facts. Make small Number Charts available for them so they can draw arrays when needed. Also encourage them to employ mental strategies, using the facts they do know to figure out those they don’t know immediately. For example, a student who remembers that 7 times 7 is 49 can figure out what 7 times 8 is by adding another 7 to 49. While the arrays are useful visual models that build students’ conceptual grasp of multiplication, the mental strategies are ultimately more efficient.
Support Activity 17

Ten to Win

You’ll need

- Ten to Win Spinner (Blackline S 17.4, 1 copy cut in half for every 2 pairs of players)
- Ten to Win Game Boards (Blackline S 17.5, a few copies for each pair of players run back-to-back)
- Small Number Charts (Blackline S 17.6, a few copies run back-to-back per player)
- Pencil and paperclip to use as a spinner (1 set for each pair of players)
- 10 red or 10 blue game markers or 10 each of two different kinds of beans, cereal pieces, or coins to use as game markers (optional)

Instructions for Ten to Win

1. If you want to re-use the game board, get 10 each of two different color game markers and assign one color to each player. (If you’re playing at home, you can use 2 different kinds of cereal or beans as markers.) You can fill in the spaces on the game board with pencils or crayons instead of using game markers. If you do, you will not be able to reuse the game board.

2. Players take turns spinning both spinners and multiplying the two numbers. The player looks for that product on the same game board and covers it with a game marker or marks it with his or her color. If that product is already covered, the player loses his or her turn.

3. When the next player spins the spinners, he or she multiplies the two numbers, finds the product on the same game board, and covers it with a game marker or marks it with his or her color.
Support Activity 17 (cont.)

Ten to Win Game Boards

Round 1

<table>
<thead>
<tr>
<th>16</th>
<th>20</th>
<th>24</th>
<th>24</th>
<th>25</th>
<th>25</th>
<th>28</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
<td>32</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td>42</td>
<td>45</td>
<td>45</td>
<td>48</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>54</td>
<td>56</td>
<td>63</td>
<td>63</td>
<td>64</td>
<td>72</td>
<td>72</td>
<td>81</td>
</tr>
</tbody>
</table>

“Eight times seven is 56, so I’ll put my marker on 56.”

4 If a player gets stumped, he or she can draw the array on a small Number Chart to find the product.

Small Number Charts

Mom I couldn’t remember 8 times 7, so I made an array on the Number Chart. I see 35 here, 15 here, and 6 here. 35 plus 15 is 50, and then 6 more is 56. So 8 times 7 is 56.

Maria That’s a tricky one. I can always remember 8 times 8 is 64, so then I just think for 8 times 7, it’s 64 minus 8. That’s 56.

5 Players take turns until one player has covered 10 products to win the game.
Ten to Win Spinner

Ten to Win Spinner
Ten to Win Game Boards

Round 1

<table>
<thead>
<tr>
<th>16</th>
<th>20</th>
<th>20</th>
<th>24</th>
<th>24</th>
<th>25</th>
<th>28</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>32</td>
<td>32</td>
<td>35</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td>42</td>
<td>45</td>
<td>45</td>
<td>48</td>
<td>48</td>
<td>49</td>
<td>54</td>
</tr>
<tr>
<td>54</td>
<td>56</td>
<td>56</td>
<td>63</td>
<td>63</td>
<td>64</td>
<td>72</td>
<td>72</td>
<td>81</td>
</tr>
</tbody>
</table>

Round 2

<table>
<thead>
<tr>
<th>16</th>
<th>20</th>
<th>20</th>
<th>24</th>
<th>24</th>
<th>25</th>
<th>28</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>32</td>
<td>32</td>
<td>35</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td>42</td>
<td>45</td>
<td>45</td>
<td>48</td>
<td>48</td>
<td>49</td>
<td>54</td>
</tr>
<tr>
<td>54</td>
<td>56</td>
<td>56</td>
<td>63</td>
<td>63</td>
<td>64</td>
<td>72</td>
<td>72</td>
<td>81</td>
</tr>
</tbody>
</table>
Small Number Charts

Run a few copies back-to-back for each player.
Support Activity 18 ★ Instructional Considerations

Make Zero

Overview
Players take turns spinning 4 single-digit numbers. Both players add, subtract, multiply, or divide those numbers in any order to try to get to 0. They can use each number only once. If it is not possible to get to 0 with those 4 numbers, players can spin for a fifth number, which they can use in addition to the other 4 numbers or use to replace one of the other numbers. Players see how many different ways they can get to 0 with the same group of numbers.

Skills & Concepts
★ demonstrating computational fluency with addition, subtraction, and multiplication
★ exploring the commutative, associative, and distributive properties of multiplication, as well as the special properties of 0 and 1 in multiplication
★ identifying and applying the operation needed (addition, subtraction, multiplication, or division) for solving a problem

You’ll need
★ Make Zero Spinner (Blackline S 18.3, 1 copy for every 2 pairs of players)
★ Make Zero Record Sheet (Blackline S 18.4, a few copies run back-to-back for each player)
★ pencil and paperclip to use as a spinner (1 set for each pair of players)

Make Zero gives students practice with their basic facts in a problem-solving context. It also gives them plenty of opportunities to apply the zero properties of addition (0 + a = a) and multiplication (0 x a = 0). As they use these properties, encourage them to make generalizations about them. If they multiply 6 times 0 to get to 0, for example, ask them whether they’d get the same result if they multiplied 8 times 0. Press them to explain why.

In Make Zero, students will use addition and subtraction more often than multiplication and division. If you see an opportunity that they have missed to use multiplication or division, ask if they can see a way to get to zero using these operations.

Do bear in mind that Make Zero does not provide visual models to support students who are struggling with their basic facts. If a student needs to use arrays for multiplication and division, or is still struggling with basic addition and subtraction, use a support activity that includes a model for the operation(s) with which the student is struggling.
Support Activity 18

Make Zero

You’ll need

★ Make Zero Spinner (Blackline S 18.3, 1 copy for every 2 pairs of players)
★ Make Zero Record Sheet (Blackline S 18.4, a few copies run back-to-back for each player)
★ pencil and paperclip to use as a spinner (1 set for each pair of players)

Instructions for Make Zero

1. Players share a spinner but use their own record sheets. Assign one player to spin the spinner to get 4 different numbers. The player may need more than 4 spins to get 4 different numbers. Both players write each number in the boxes on their record sheets.

2. Now both players try to get to 0 using each number only once. Players can add, subtract, multiply, or divide, and can use the numbers in any order, but may use each number only once.

3. If both players find they are unable to get to 0, one player spins one more time for a fifth number. Players may use all 5 numbers now, or use the fifth number instead of one of the 4 original numbers.

4. When both players have found a way to get to 0, they compare their ways. If they did it the same way, they work together to think of another way to do it with the same numbers.

Uncle Niko I said 5 plus 3 is 8. And then 8 minus 7 is 1. And 1 minus 1 is 0. Want to see if we can find some more ways?

Roberto First I said 3 minus 1 is 2. And then I said 2 plus 5 is 7. And then 7 minus 7 is 0!
Make Zero Spinner

![Diagram of a spinner with numbers 0 to 9]

Make Zero Spinner

![Diagram of a spinner with numbers 0 to 9]
Make Zero Record Sheet

Round 1

Optional 5th Spin

Round 2

Optional 5th Spin

Round 3

Optional 5th Spin

Optional 5th Spin